University of Ioannina

Measurement of the ¹⁶²Er(n,2n)¹⁶¹Er reaction cross section

Zinovia Eleme¹, Efstathia Georgali¹, Nikolas Patronis¹, Xenofon Aslanoglou¹, Michael Axiotis², Mary Diakaki⁵, Varvara Foteinou², Anastasia Georgiadou¹, Sotirios Harissopulos², Antigoni Kalamara³, Michael Kokkoris³, Anastasios Lagoyannis², George Provatas², Andreas Tsinganis⁴, Roza Vlastou³, Stergiani-Marina Vogiatzi¹

¹Department of Physics, University of Ioannina, 45110 Ioannina, Greece ²Tandem Accelerator Laboratory, Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens, Greece ³Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece ⁴European Organization for Nuclear Research (CERN) Geneva, Switzerland ⁵CEA/Saclay-IRFU, Gif-sur-Yvette, France

INTRODUCTION

The study of neutron threshold reactions is of considerable importance for testing nuclear models as well as for providing new and updated nuclear data information for Nuclear Physics Applications. Accordingly, the measurement of ¹⁶²Er(n,2n)¹⁶¹Er reaction cross sections at energies above the reaction threshold is crucial for a better understanding of the compound nucleus models as well as for testing the input parameters of Hauser-Feschbach theoretical calculations. Considering also that ¹⁶²Er is the lightest stable Erbium isotope the optimization of the model-parameterization in this region of the chart of nuclides is of special interest. Additionally, Erbium is a commonly used absorbing material in Nuclear Reactor technology. Therefore, the accurate knowledge of the neutron multiplication factor and neutron reaction cross sections is important for the research and development of the next generation fast neutron nuclear reactors. Within the present work the ¹⁶²Er(n,2n)¹⁶¹Er reaction cross section was measured at four neutron beam energies by means of the activation technique. The sample irradiations as well as the measurement of the induced y-ray activity was realized at the neutron beam facility of NCSR "Demokritos".

NEUTRON IRRADIATION SET-UP

- Tandem Van der Graaf 5.5 MV accelerator of the Institute of Nuclear **Physics NCSR "Demokritos"**
- Neutron Reactions : ²H(²H,n)³He & ³H(²H,n)⁴He
- Neutron production primary target:
- For the D-D reaction : D, gas target (1250 mbar) ♥
- For the D-T reaction : solid Titanium-Tritide (TiT) target <
 - Activity (³H)=373 GBq
 - Nucleus Ratio T/Ti = 1.543
- Neutron beam intensity continuously monitoring with a BF, detector
- 162 Er pellet target produced by Er₂O₃ powder
- ¹⁶²Er pellet target diameter : 12.95 mm
- Reference reactions : ¹⁹⁷Au(n,2n)¹⁹⁶Au, ²⁷Al(n,a)²⁴Na and ⁹³Nb(n,2n)^{92m}Nb
- Irradiation time : 10 h given that T_{1/2} (¹⁶¹Er)=3.21 h

	Q-value (MeV)	E _d (MeV)	E _n (MeV)	Neutron flux (cm ⁻²)	Neutron flux Error (cm ⁻²)	Samples position
D-D	3.27	8.17 8.47	11.0 11.3	7.49E+10 1.08E+10	0.39E+10 0.07E+10	5 cm from D ₂ gas target
D-T	17.59	2.50	17.1	1.21E+10	0.08E+10	1.5 cm from TiT target
		3.00	18.1	1.06E+10	0.07E+10	

y-RAY SPECTROSCOPY SET-UP

• Off-line measurements of the induced activity of the samples

Erbium sample : 2x100% relative efficiency HPGe detectors used in close geometry given the minimal abundance (0.139%) in ¹⁶²Er in the natural sample composition. This dictates the maximum possible efficiency

Reference foils : one HPGe detector with 16% relative efficiency placed at 7cm distance with with respect to the detector window

Calibration Sources

- 16% HPGe detector : an isotopic point source of ¹⁵²Eu used in the sample position.
- 2x100% HPGe detectors : one ⁵⁴Mn point source, which emits a single y-ray at 834. 8 keV similar to the 826.6 keV y-ray , which is the strongest decay line of ¹⁶¹Er.

DATA ANALYSIS

• Decay of ¹⁶¹Er : 826.6 keV the stronger line Multiplicity ~ 1 : no summing effects

CONCLUSIONS

• Measurement of the ¹⁶²Er(n,2n)¹⁶¹Er reaction cross section for the first time at energies 11.0, 11.3, 17.1 and 18.1 MeV Activation method + neutron beam facility at NCSR

