

UNIVERSITY OF IOANNINA

SCHOOL OF PHYSICAL SCIENCES
DEPARTMENT OF PHYSICS

Coupling the GEF code with GEANT4 Monte Carlo simulations towards
the interpretation of the fission data from the n_TOF facility at CERN

M.Sc. Thesis
Loli Eleftheria

Academic supervisor
Patronis Nikolaos, Associate Professor, University of Ioannina

Ioannina, June 2020

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ

Συνδυασμός του κώδικα GEF με προσομοιώσεις Monte-Carlo, μέσω
του λογισμικού GEANT4, με στόχο την ερμηνεία των δεδομένων

σχάσης του πειράματος n_TOF στο CERN

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
Λώλη Ελευθερία

Ακαδημαϊκός επιβλέπων
Πατρώνης Νικόλαος, Αναπληρωτής καθηγητής, Πανεπιστήμιο

Ιωαννίνων

Ιωάννινα, Ιούνιος 2020

i

Acknowledgments

Foremost, I would like to thank Assoc. Prof. Nikolas Patronis of the Physics Department of the
University of Ioannina, who supervised the present thesis and gave me the opportunity to
work in the field of Nuclear Physics. I am grateful for his support and motivation throughout
this project. Without his guidance, encouragement and constructive feedback I would not be
writing this thesis.

Moreover, I owe special thanks to my dear friend and Ph.D. candidate of the Physics
Department of the University of Ioannina, Zinovia Eleme for her invaluable help. As the
context of this project is related to the experiment she carried out in the framework of her
Ph.D., she was the most experienced person in case I had a question or needed a bit of advice.
I am deeply indebted to her for her support.

Finally, thanks to my friends and colleagues Efstathia Georgali Ph.D. candidate, Maria-Elisso
Stamati and Maria Peoviti M.Sc. students of the Physics Department of the University of
Ioannina for the wonderful moments we shared.

ii

iii

Ευχαριστίες
Αρχικά θα ήθελα να ευχαριστήσω τον Αναπλ. Καθ. Νικόλαο Πατρώνη του τμήματος Φυσικής
του Πανεπιστημίου Ιωαννίνων, που επέβλεψε αυτήν την εργασία και μου προσέφερε την
ευκαιρία να δουλέψω στο κομμάτι της Πυρηνικής Φυσικής. Είμαι υπόχρεη για την
υποστήριξη και την ενθάρρυνσή του κατά τη διάρκεια αυτού του ερευνητικού έργου. Χωρίς
την καθοδήγηση και τα εποικοδομητικά του σχόλια, δεν θα έγραφα αυτή την εργασία.

Επιπλέον, οφείλω ένα ευχαριστώ στη φίλη μου και υποψήφια διδάκτορα του τμήματος
Φυσικής του Πανεπιστημίου Ιωαννίνων, Ζηνοβία Ελεμέ για την πολύτιμη βοήθειά της. Καθώς
το περιεχόμενο αυτής της εργασίας σχετίζεται με το πείραμα που πραγματοποίησε στα
πλαίσια του διδακτορικού της, ήταν το πιο έμπειρο άτομο στην περίπτωση που είχα μια
απορία ή χρειαζόμουν μια συμβουλή. Της είμαι βαθιά υπόχρεη για την υποστήριξη που μου
προσέφερε.

Ολοκληρώνοντας, ευχαριστώ θερμά τους φίλους και συναδέλφους μου, Ευσταθία Γεωργαλή,
υποψήφια διδάκτορα, Μαρία-Ελισσώ Σταμάτη και Μαρία Πεοβίτη, μεταπτυχιακές
φοιτήτριες του τμήματος Φυσικής του Πανεπιστημίου Ιωαννίνων για τις υπέροχες στιγμές
που μοιραστήκαμε.

iv

v

Abstract
Towards the interpretation of the fission reaction data from Micromegas detectors, the pulse
height spectrum should be fully characterized. In this thesis, extended simulations of
Micromegas detectors were performed. To ensure the accuracy of the fission process in the
Monte Carlo simulations, the fission process and fission fragments yield were calculated by
means of the GEF code and the rest of the particle transportation was accomplished through
the GEANT4 toolkit. The results of standalone GEANT4 simulations were compared with the
ones from the combination of the GEF code with GEANT4. Additionally, the energy deposition
of light and heavy fission products and the effect of the surface homogeneity and chemical
composition of the targets on the energy deposition was examined. The simulation results
with respect to the energy deposition of the fission products within the active gas volume of
the detector were combined with the appropriate response function, in an attempt to
reproduce the experimentally observed pulse height spectrum, with emphasis in the low
energy region. This work is an important step for the accurate estimation of the needed
correction factors that correspond to the adopted software thresholds set in general and in
any n_TOF fission data analysis process.

vi

vii

Περίληψη

Ο πλήρης χαρακτηρισμός του φάσματος ύψους παλμών του ανιχνευτή Micromegas
αποτελεί βασική προϋπόθεση για την ακριβή ερμηνεία των αντίστοιχων δεδομένων
σχάσης. Σε αυτή την διατριβή πραγματοποιήθηκαν εκτενείς προσομοιώσεις τέτοιων
ανιχνευτών. Τα θραύσματα σχάσης υπολογίστηκαν με τον κώδικα GEF και οι υπόλοιπες
αλληλεπιδράσεις τους στον ενεργό όγκο του ανιχνευτή με το λογισμικό πακέτο GEANT4. Με
αυτό τον τρόπο διασφαλίσθηκε η ακρίβεια των υπολογισμών παραγωγής των θραυσμάτων
σχάσης στις προσομοιώσεις Monte-Carlo. Τα αποτελέσματα αυτόνομων προσομοιώσεων
από το GEANT4 αξιολογήθηκαν συγκρίνοντάς τα με τα αντίστοιχα από τον συνδυασμό του
κώδικα GEF με to GEANT4. Επιπλέον, διερευνήθηκε η εναπόθεση ενέργειας των ελαφριών
και βαριών προϊόντων σχάσης και η επίδραση της ομοιογένειας της επιφάνειας και της
χημικής σύστασης του στόχου στο ενεργειακό φάσμα. Ακολούθως, η καταγραφή της
εναπόθεσης ενέργειας των προϊόντων σχάσης στον εναέριο όγκο του ανιχνευτή
συνδυάστηκε με την κατάλληλη συνάρτηση απόκρισης (response function) προκειμένου να
αναπαραχθεί όσο γίνεται καλύτερα το πειραματικό φάσμα ύψους παλμών -με έμφαση
στην περιοχή χαμηλών ενεργειών. Η συγκεκριμένη έρευνα αποτελεί ένα σημαντικό βήμα
για τον υπολογισμό των διορθωτικών παραγόντων σχετικά με την εισαγωγή κατωφλίων
(software thresholds) όπως αυτά εφαρμόζονται σε κάθε διαδικασία ανάλυσης δεδομένων
από τα πειράματα σχάσης της δραστηριότητας n_TOF στο CERN.

viii

ix

Contents

Acknowledgements i

Ευχαριστίες iii

Abstract v

Περίληψη vii

Introduction 1

1 Background
1.1 Nuclear fission ……. 2
1.2 The n_TOF facility at CERN …………………………………………………………………………………….… 6
1.3 The Micromegas detector ……………………………………………………………………………………..… 7
1.4 The GEF code ……… 8
1.5 The GEANT4 simulation toolkit ………………………………………………………………………………. 11
1.6 The physics case of 𝐴𝐴𝐴𝐴

241 (𝑛𝑛, 𝑓𝑓)……………………………………………………………………………. 12

2 Theoretical calculations using GEF 14
 2.1 Dependence on the incident neutron energy …………………………………………………………. 14
 2.2 Distributions of fission products …………………………………………………………………………..… 16

3 Monte Carlo simulations 18
 3.1 Detector geometry and primary particle source …………………………………………………….. 18
 3.2 A GEF/GEANT4 and a GEANT4 standalone simulation comparison …………………………. 21
 3.3 Energy deposition of light and heavy fission products ……………………………………………. 23
 3.4 Effect of the surface homogeneity of the target ……….………………………………………….… 25
 3.5 Effect of the chemical composition of the target..…………………………………………………… 27

4 Micromegas detector response function 31

5 Results 33

Conclusions 40

A ROOT analysis script 41

B GEANT4 simulation code 46

References 71

1

Introduction

The accurate knowledge of fission data, such as neutron-induced fission cross sections of
various minor actinides, is important for the design of advanced nuclear systems as well as for
the development of theoretical models of the fission process. At the n_TOF/CERN facility,
fission related experiments are performed with Micromegas detectors, taking advantage of
the wide energy range (from thermal to tens of MeV) and the high instantaneous flux of the
neutron beam. For the interpretation of the fission reaction data obtained, the pulse height
spectrum of the detector should be fully characterized.

Monte Carlo simulations can be used for a better understanding of the fission process and
detector behavior. The present work adopts a coupling of two such methods. More
specifically, the GEF code is used for the description of the fission process and the properties
of the fission fragments and the GEANT4 for the rest of the particle transportation. Thus, the
accuracy of the fission process in the Monte Carlo simulations is ensured.

During the simulation, the energy deposition of the detected particles inside the active gas
volume of the detector is recorded. Thus, by varying some of the parameters that describe
the experimental set up of the detector and the primary particles, the effect of those changes
on the obtained energy spectrum can be examined.

The simulation results can be used within any data analysis framework to apply a response
function that describes the behavior of the detector components, in an attempt to reproduce
the experimentally obtained pulse height spectrum, with emphasis in the low energy region.
This work can be later used for the accurate estimation of the needed correction factors that
correspond to the adopted software thresholds set in general and in any n_TOF fission data
analysis process.

This thesis is structured as follows. In Chapter 1 the necessary background is briefly described.
That involves the fission process and the experimental set up in a fission experiment, i.e. the
n_TOF facility and Micromegas detector. The simulation environment of GEF and GEANT4
codes is introduced. Additionally, the physics case of 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 which is studied in the
context of this thesis is presented. Chapter 2 includes the theoretical calculations with the GEF
code and Chapter 3 consists of the Monte Carlo simulations. The detector geometry and
primary particles are defined and the results of a GEANT4 standalone simulation are
compared with the ones from the combination of GEF code with GEANT4. Moreover, the
energy deposition of heavy and light fission products is studied and the effects of the target
surface homogeneity and chemical composition on the energy deposition of the fission
products are examined. Finally, the Micromegas detector response function is the subject of
Chapter 4. An attempt to reproduce the experimentally observed pulse height spectrum with
emphasis in the low energy region is demonstrated for different incident neutron energies.

2

Chapter 1

Background

1.1 Nuclear fission

Nuclear fission is a process in which a highly-deformed heavy nucleus is divided into two
fragments of comparable masses with the release of energy. A concise description of the
fission process is given below.

The Liquid Drop Model

Bohr and Wheeler (1939) [1] were the first to provide a theoretical description of the fission
mechanism, based on the Liquid Drop Model (LDM). In the context of the LDM, the nucleus is
described as an electrically charged liquid drop. It is represented by a spherical drop of
incompressible nuclear liquid in which the nucleons interact with a limited number of their
nearest neighbors. The analogy of the nuclear behavior to that of a charged liquid drop is
reflected by the semi-empirical mass formula:

𝐸𝐸 = 𝐸𝐸𝑣𝑣 + 𝐸𝐸𝑠𝑠 + 𝐸𝐸𝑐𝑐 + 𝐸𝐸𝑎𝑎 + 𝛿𝛿(𝐴𝐴,𝑍𝑍)

 = 𝑎𝑎𝑣𝑣𝐴𝐴 − 𝑎𝑎𝑠𝑠𝐴𝐴
2
3� − 𝑎𝑎𝑐𝑐

𝑍𝑍2

𝐴𝐴1 3�
− 𝑎𝑎𝑎𝑎

(𝑁𝑁 − 𝑍𝑍)2

𝐴𝐴
+ 𝛿𝛿(𝐴𝐴,𝑍𝑍) (1.1)

Since the nuclear radius is proportional to 𝐴𝐴1 3� , 𝐸𝐸𝑣𝑣 expresses that the binding energy increases
with increasing number of nucleons (volume term), 𝐸𝐸𝑠𝑠 that the nucleons at the surface
interact with fewer other nucleons and are less bound (surface term), 𝐸𝐸𝑐𝑐 describes the
repulsive electrostatic force between the protons (Coulomb), 𝐸𝐸𝑎𝑎 the tendency of nuclei to be
symmetric, i.e. (𝑍𝑍 = 𝑁𝑁) for light nuclei, for heavy this term is reduced (asymmetry term) and

𝛿𝛿(𝐴𝐴,𝑍𝑍) = �
−𝛿𝛿0 𝛧𝛧,𝛮𝛮 even

0 𝐴𝐴 odd
+𝛿𝛿0 𝑍𝑍,𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜

 (1.2)

that the energy of a nucleus is lower when there is an equal number of protons (neutrons)
with spin up and spin down (pairing term).

The volume of the nucleus is considered to remain constant, thus if a spherical nuclear drop
gets deformed only the surface 𝐸𝐸𝑠𝑠 and Coulomb 𝐸𝐸𝑐𝑐 terms will be affected. Bohr and Wheeler
[1] described small deformations by expanding the radius 𝑟𝑟 in Legendre series:

𝑟𝑟(𝜃𝜃) = 𝑅𝑅 �1 + �𝑎𝑎𝑛𝑛𝑃𝑃𝑛𝑛(𝑐𝑐𝑜𝑜𝑐𝑐𝜃𝜃)
𝑛𝑛=1

� (1.3)

where 𝑅𝑅 is the radius of the spherical nuclei. The coefficients 𝑎𝑎1 and 𝑎𝑎2 correspond to the
quadrupole and octupole deformation, hence they describe an ellipsoid.

They proved that the sum of 𝐸𝐸𝑠𝑠 and 𝐸𝐸𝑐𝑐 terms 𝐸𝐸𝑠𝑠+𝑐𝑐 can be written as:

3

𝐸𝐸𝑠𝑠+𝑐𝑐 = 𝐸𝐸𝑠𝑠0 �1 +
2
5
𝑎𝑎22� + 𝐸𝐸𝑐𝑐0 �1 −

1
5
𝑎𝑎22�

= 𝐸𝐸𝑠𝑠+𝑐𝑐0 +
2
5
𝐸𝐸𝑠𝑠0 �1 −

𝐸𝐸𝑐𝑐0

2𝐸𝐸𝑠𝑠0
� 𝑎𝑎22 (1.4)

where 𝐸𝐸𝑠𝑠0,𝐸𝐸𝑐𝑐0,𝐸𝐸𝑠𝑠+𝑐𝑐0 are the energies of a sphere. The term

𝜒𝜒 ≡ 𝐸𝐸𝑐𝑐0

2𝐸𝐸𝑠𝑠0
≅ 1

50
𝑍𝑍2

𝐴𝐴
(1.5)

Is denoted as the fissility parameter 𝜒𝜒. It is characteristic of the nucleus and defines whether
the binding energy of a distorted sphere will increase, decrease or remain constant.

If 𝜒𝜒 > 1, then the deformation energy 𝛥𝛥𝐸𝐸𝑠𝑠+𝑐𝑐 = 𝐸𝐸𝑠𝑠+𝑐𝑐 − 𝐸𝐸𝑠𝑠+𝑐𝑐0 is positive (𝛥𝛥𝐸𝐸𝑠𝑠+𝑐𝑐 > 0) and
fission occurs spontaneously. If 𝜒𝜒 < 1, the deformation energy will increase and then
decrease leading to a single-humped potential barrier. For zero deformation, a local minimum
in the deformation potential appears, hence the LDM predicts a spherical shape for nuclei in
their ground state, which is not generally true.

The double-humped fission barrier

A single-humped barrier provides a macroscopic treatment of the process. A weakness of this
model is that it ignores the nuclear structure. It further suggests a strong dependence of the
barrier on 𝑍𝑍2 𝐴𝐴⁄ in contradiction to experimental data and a spherical nuclei shape in the
ground state [2].

Strutinsky [3] proposed a “macroscopic-microscopic” approach to take shell effects into
account with the addition of a shell correction term 𝛿𝛿𝛿𝛿 to the binding energy of LDM (eq. 1.1)
𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 . It was expanded to

𝐸𝐸 = 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛿𝛿𝛿𝛿 (1.6)
where

𝛿𝛿𝛿𝛿 = 𝛿𝛿 − 𝛿𝛿� (1.7)

is the difference between the total energy of the nucleus calculated with a realistic shell model
with distinct single-particle states and one with a uniform distribution of states. The addition
of this term results in a double-humped fission barrier as displayed in Figure 1. States in the
first well are classified as ‘Class-I’ and in the second one as ‘Class-II’.

The theory of a double-humped potential provided an explanation for experimental
observations, among which a non-spherical equilibrium shape, fission barrier heights,
spontaneous fission isomers and cluster resonances. A detailed description is given by
Bjornholm and Lynn [2].

4

Figure 1.1: Schematic plots of a single-humped fission barrier of LDM and a double-humped introduced by shell
corrections.[4].

Characteristics of fission

The fission process is the deformation of a nucleus from a ground-state shape to an elongated
configuration that is divided into two fission fragments along with the emittance of neutrons
and energy.

If the fragments have equal mass, the fission is called mass-symmetric; otherwise it is referred
to as mass-asymmetric. The presence of two independent deformation paths has been
proposed to interpret the preference for asymmetric mass-division in low energy fission. The
asymmetric mode which has a lower energy threshold and the symmetric mode with a higher
one. A detailed description is given in [5].

At the instance of fission, the fragments shred their energy excess through the emission of
prompt neutrons (~2,3) (within 10−16𝑐𝑐) and prompt 𝛾𝛾 rays (within 10−14𝑐𝑐) resulting in the
fission products. Delayed neutrons are often emitted after the 𝛽𝛽 decay of the products. At a
fission event, the large amount of energy (~200 𝑀𝑀𝑀𝑀𝑀𝑀) appears mainly as fission fragments
kinetic energy (~80%), while the rest appears as prompt 𝛾𝛾 rays (~8 𝑀𝑀𝑀𝑀𝑀𝑀), 𝛽𝛽 decays
(~19 𝑀𝑀𝑀𝑀𝑀𝑀) and 𝛾𝛾 decays (~7 𝑀𝑀𝑀𝑀𝑀𝑀) from the fragments (Figure 1.2)[6].

Figure 1.2: Schematic of post scission in fission [7]

5

Neutron-induced fission cross-section

In the context of the present thesis, simulations of the reactions 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 and 𝛿𝛿(𝑛𝑛, 𝑓𝑓)
235

were performed. Following the theoretical description of the fission process, the
characteristics of the cross-sections of these reactions can be explained. The 𝛿𝛿(𝑛𝑛, 𝑓𝑓)

238
reaction is studied as well.

Figure 1.3: The cross-sections of the reactions 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 𝛿𝛿(𝑛𝑛, 𝑓𝑓)
235 𝛿𝛿(𝑛𝑛,𝑓𝑓)

238

For low incident neutron energies (thermal up to 1 eV), the probability of a reaction is
proportional to the time the neutron spends inside the nucleus. Therefore, the cross-section
decreases with increasing velocity and energy (1 𝑢𝑢 � law). The difference in the magnitude of
the cross-sections is a result of the pairing effect. The fission barrier is approximately the same
for the nuclei ~6 − 7 𝑀𝑀𝑀𝑀𝑀𝑀. The neutron separation energy (the energy increase of the nucleus
after the absorption of a neutron) depends on the configuration of the compound nucleus. If
it is even-N, the excitation energy is higher than the barrier even with thermal neutrons. On
the contrary, if it is an odd-N incident neutron energy greater than ~1 𝑀𝑀𝑀𝑀𝑀𝑀 is required.
Resonances appear in the 1eV-1keV region, due to excited states of the compound nucleus.
In the MeV region, where the neutron carries enough energy so that the nucleus can
overcome the fission barrier (fission threshold), the cross-sections are similar for all nuclei.
The steps at higher energies correspond to multi-chance fission. The nucleus fissions after the
emission of pre-equilibrium neutrons, (𝑛𝑛, 𝑥𝑥𝑛𝑛𝑓𝑓) channel.

6

1.2 The n_TOF facility at CERN

The n_TOF facility at CERN is a time-of-flight facility based on a spallation neutron source [8,9].
It offers two beam lines: A horizontal one with high resolution and moderate flux with a flight
path of 185 𝐴𝐴 and a vertical one with high flux and moderate resolution with a 20 𝐴𝐴 flight
path, which lead to Experimental Area 1 (EAR1) and Experimental Area 2 (EAR2), respectively.
Neutrons are produced via spallation when 20 𝐺𝐺𝑀𝑀𝑀𝑀/𝑐𝑐 proton bunches from CERN’s Proton
Synchrotron (PS) impinge on a 40 𝑐𝑐𝐴𝐴 in length and 60 𝑐𝑐𝐴𝐴 in diameter lead spallation target.
The proton bunch intensity varies from ~3 × 1012(parasitic bunches) up to ~8 ×
1012(dedicated punches) with a nominal of ~7 × 1012 protons. The small repetition rate
which does not exceed 0.8 𝐻𝐻𝐻𝐻 (1.2 s between consecutive bunches) and the small width of
the proton bunch (7 ns rms in dedicated and 20 ns in parasitic mode) allows for well-separated
neutron bunches delivered in both experimental areas. The high instantaneous flux, good
energy resolution and background suppression allow the measurement of low cross-sections,
highly radioactive samples and isotopes available in small masses.

The spallation target is surrounded by a 1 𝑐𝑐𝐴𝐴 thick circulating layer of cooling water and an
additional 4 𝑐𝑐𝐴𝐴 thick circulating layer of borated water in the horizontal direction for
moderation reasons. The neutron spectrum at n_TOF covers a wide neutron energy range
from the thermal region up to several tens of MeV [11]. A graphical representation of the
facility that includes both experimental areas is shown in Figure 1.4.

The measurement of the reactions studied in the present thesis was performed at EAR2, thus
a concise description will be given for this experimental hall [11]. A dipole magnet is in place
to deflect the charged particles traveling with the neutrons inside the vacuum tube, thus
preventing them from reaching the experimental hall. Two collimators are installed in the
beam line: the first has an inner diameter of 20 𝑐𝑐𝐴𝐴. The second one shapes the neutron beam
and two different configurations are available. For capture cross-section measurement, where
a narrow well-defined beam is required, the inner diameter is 2.2 𝑐𝑐𝐴𝐴 and for fission
measurements which employ very thin and wider targets, is 6 𝑐𝑐𝐴𝐴. The higher flux and shorter
times of flights involved in EAR2 offer a stronger suppression of sample-induced background.

Figure 1.4: Graphical representation of the n_TOF facility with its two neutron beam lines ending in the
experimental areas EAR1 and EAR2. Both spallation targets are also shown. Target #1 was used during Phase 1 of
the n_TOF experiment, while target #2 was used during the Phases 2 and 3 (2008-2018). [11]

7

1.3 The Micromegas detector

The Micromegas detector (MICRO Mesh Gaseous Structure) [12, 13, 14] belongs to the Micro-
pattern gaseous detectors (MPGDs) [15, 16]. MPGSs with their excellent spatial and time
resolution, high granularity and rate capabilities have been adopted by many experiments
handling high count rates.

For neutron measurements it is important to minimize the amount of material present in the
beam to reduce the background. Thus, the microbulk [17] design was developed which is used
in n_TOF experiments.

The Micromegas is an asymmetric stage parallel plate detector; its basic operation principle is
illustrated in Figure 1.5. The space between the cathode and the anode is separated by a
micromesh into two regions: the drift or conversion region and the amplification region. The
micromesh is a thin 5 𝜇𝜇𝐴𝐴 copper conductive layer with 35 𝜇𝜇𝐴𝐴 diameter holes and a pitch of
 50 𝜇𝜇𝐴𝐴.

The primary particle ionizes the gas in the drift region (~7 𝐴𝐴𝐴𝐴) creating electron-ion pairs.
An electric field of (~5 𝑘𝑘/𝑀𝑀) is applied which causes the electrons to drift to the mesh, but is
not strong enough to allow the creation of avalanches. In the amplification region (~50 𝜇𝜇𝐴𝐴),
the electric field is stronger (~50 𝑘𝑘/𝑀𝑀), thus avalanches are formed improving the signal-to-
noise ratio of the detector. The charge is finally collected in the anode and the induced signal
is readout.

Figure 1.5: Basic operation principle of Micromegas detector. A particle emitted from a source ionizes the atoms
of the gas creating positive ions and electrons. As the electrons travel towards the anode the pass through the
mesh and are amplified before reaching the readout strips.

The electric field in both the drift and amplification gap is homogeneous. It only exhibits a
funnel-like shape close to the micromesh holes as shown in Figure 1.6. The field lines are
compressed to the openings into a small diameter, depending on the electric field ratio
between the two gaps. This ratio is tuned to ensure electron transparency and quick collection
of ions created in the amplification region to the micromesh.

8

Figure 1.6: Electric field of Micromegas. The electrons in the drift region are carried towards the center of the
holes and the positive ions created in the amplification region are captured at the mesh [15].

The detector operates with an 𝐴𝐴𝑟𝑟:𝐶𝐶𝐹𝐹4: 𝑖𝑖𝑐𝑐𝑜𝑜𝐶𝐶4𝐻𝐻10 (88: 10: 2) gas mixture at atmospheric
pressure. The use of 𝐶𝐶𝐹𝐹4 mixture increases the electron drift velocity and decreases the
diffusion coefficient thus improving the energy resolution.

In an n_Tof experiment, a stainless steel chamber is constructed to hold the samples and
Micromegas detectors. The chamber is placed along the beam line and its axis is aligned to
the neutron beam. The entrance and exit windows are made of Kapton and air-tight
connectors are installed to apply the high-voltages and read the output signals.

1.4 The GEF code

The GEneral Fission (GEF) code is a semi-empirical model for the description of fission
observables [18, 19]. It combines general laws of physics and mathematics with empirical
information and provides results for a wide range of fissioning nuclei from polonium to
seaborgium up to excitation energies of 100 MeV including multi-chance fission. Because the
model is based on a firm theoretical frame and preserves the link between different fission
observables, GEF also gives reliable results in cases no experimental information is available,
contrary to most of the existing fission models. It is a Monte Carlo code and for each fission
event it calculates all the properties of the two fission fragments at scission: mass, charge,
excitation energy and angular momentum, as well as the fission fragments kinetic energies.
In addition, GEF treats the deexcitation of the fission fragments and provides the prompt-
neutron and prompt-gamma multiplicities associated with each fragment, as well as the
prompt-neutron and prompt-gamma kinetic energies and angles. All this information can be
delivered by the code on an event-by-event basis and can serve as an event generator for
simulation purposes. A graphical representation of GEF is shown in Figure 1.7.

9

Figure 1.7: A graphical representation of GEF model [20].

Physics behind GEF

GEF combines general laws of quantum and statistical mechanics with specific experimental
information. A complete description of the code can be found in [18]. The main ideas used to
derive the shape of the fission-fragments yields and the partition of the intrinsic excitation
energy between the fragments are discussed below.

Fission-fragment yields

The fission fragment yields are determined by the potential energy landscape between the
fission barrier and scission as a function of the mass-asymmetry degree of freedom. The
microscopic-macroscopic approach is adopted, according to which, the shape of the potential
energy on the way to scission is given by the combination of the macroscopic potential, as
given by the liquid-drop model, and shell effects. The two-center shell model is used to study
the single-particle structure in a di-nuclear potential with a necked-in shape. Mosel and
Schmitt [21] revealed that the single-particle structure in the area of the outer fission barrier
already very much resembles the sequence of single-particle levels in the two separated
fragments after scission. As a result, the microscopic properties of the fissioning system are
essentially determined by the shells of the fragments, and only the macroscopic properties
are specific to the fissioning system [22]. This “separability principle” is used in the GEF code,
which relies on empirical information to determine the stiffness of the macroscopic potential
and the position and strength of the fragment shells. The latter are valid for all fissioning
systems, which explains why the GEF code is able to give results for a very large number of

10

fissioning nuclei with one set of parameters. The magnitudes of the shell effects that form the
fission valleys and the stiffness parameters in mass-asymmetric distortions are determined by
a global fit of measured mass distributions.

Regarding the shell effects, asymmetric fission is related to the influence of a deformed
(𝛽𝛽 ≈ 0.6) fragment shell at 𝑁𝑁 = 88, the spherical shells at 𝑁𝑁 = 82 and 𝑍𝑍 = 50 [23] and with
an empirical origin the shell at 𝑍𝑍 = 54. The transition from symmetric to asymmetric fission
for heavy nuclei can be explained by the interplay between the macroscopic potential and
shell effects, as seen in Figure 1.8. The strength of the shell and its position is fixed. However,
the stiffness and the position of the minimum of the macroscopic potential increase with the
mass of the fissioning nucleus. As a result, the minimum of the total potential moves from
symmetric to asymmetric splits.

Figure 1.8: (Left) Total potential energy (red lines) and macroscopic potential lines (black lines) as a function of the
fragment charge for fissioning nuclei around Th. The minimum of the macroscopic potential located at symmetry
is indicated and a shell at 𝑍𝑍 = 55 is assumed. (Right) Experimental charge distributions obtained in
electromagnetic-induced fission. [19].

Partition of excitation energy between the fragments

The manifestation of fragment shells on the fission path, as mentioned above, suggests that
the fragments acquire their individual characteristics in the area of the fission barrier.
Therefore, at this position, the fissioning nucleus consists of two well-defined nuclei in contact
through the neck. Before scission, the available intrinsic excitation energy E*intr (given by the
sum of the excitation energy above the barrier and the dissipated energy after the saddle) is
divided between the fragments. In GEF, the excitation-energy partition is determined
according to statistical mechanics. It is assumed that the system formed by the two nuclei in
contact reaches a statistical equilibrium where all the configurations that are energetically
possible have the same probability to be populated. The nuclear temperature by the influence
of pairing correlation is assumed constant. Thus, the fissioning nucleus represents a system of
two coupled microscopic thermostats with a limited total energy. The most probable
configurations are when the available excitation energy concentrates in the heavy fragment
[24].

11

1.5 The GEANT4 simulation toolkit

GEANT4 is a Monte Carlo simulation toolkit, modeling the interaction of particles with matter
[25-27]. It is based on object-oriented technology and is implemented in C++ programming
language. It used from High Energy Physics, to medical physics and space science.

GEANT4 offers comprehensive detector and physics modelling capabilities. It is possible to
model the experimental set-up in terms of geometry and materials and to define the particles
involved and their physics interactions. The user can track particles in matter but also in the
presence of electromagnetic fields and inspect the response of the detector. Furthermore,
interfaces are provided which enable users to interact with their simulation application and
store their results in analysis objects (histograms, trees, etc.). Visualization drivers and
graphical user interfaces are included in the toolkit.

Figure 1.9: The top-level category diagram of the GEANY4 toolkit. The open circle on the joining lines represents
a using relationship; the category at the circle end uses the adjoined category [26].

The top-level categories and how each category depends on the others are illustrated in Figure
1.9. The categories (packages) at the bottom of the diagram are used by higher categories and
provide the foundation of the toolkit. These include the package global (covering the system
of units, constants, numerics and random number handling), materials, particles, graphical
representations, geometry (including the volumes for detector description and the particle

12

navigation in the geometry model) and intercoms, which provide both a means of interacting
with GEANT4 through the user interface and a way of communicating between models that
should not otherwise depend on one another.

Above these are packages required to describe the tracking of particles and the physical
processes they undergo. The track package contains classes for tracks and steps, used by
processes, which contain implementations of models of physical interactions. Furthermore,
transportation handles the transport of particles in the geometry model. All these processes
may be invoked by the tracking package, which manages their contribution to the evolution
of a track’s state and provides information from hits in the sensitive volumes (i.e. energy
deposition, generation of secondary particles, etc.) and digitization (model of the detector
response).

Over these the event package manages events and run manages collections of events that
share a common experimental configuration. A readout package allows handling the
description of the electronics and the readout associated with the experimental setup.

1.6 The physics case of 𝑨𝑨𝑨𝑨
𝟐𝟐𝟐𝟐𝟐𝟐 (𝒏𝒏,𝒇𝒇)

In the context of the present thesis, simulations of Micromegas detectors used for the study
of 𝐴𝐴𝐴𝐴

241 (𝑛𝑛, 𝑓𝑓) reaction were performed. Therefore, a concise description of the importance
of this reaction as well as the experimental setup and data acquisition of a 𝐴𝐴𝐴𝐴

241 cross-
section measurement at n_TOF are presented.

The nuclear power production through ADS (Accelerator Driven Systems) [28] as well as
Generation-IV [29] fast neutron reactors is considered as one of the possible solutions that
could address the issue of climate change – given the nearly zero 𝐶𝐶𝑂𝑂2 emission rate of nuclear
energy compared to other methods of energy production [30]. The same systems also provide
the ability of incarnation/transmutation of the existing actinides in high-level nuclear waste
from spent PWR UOx fuel [31] which is an important aspect, as well. The safe design and
operation of such nuclear power systems require high-accuracy cross-section data for a
variety of neutron-induced reactions from thermal energies to several tens of MeV. One of
the most important fissionable isotopes to be considered as a potential candidate for
incineration/transmutation is 𝐴𝐴𝐴𝐴

241 (𝑇𝑇1 2⁄ = 433 𝑦𝑦) which represents about 1.8% of the
actinide mass in spent fuel. Also taking into account the production rate of 𝐴𝐴𝐴𝐴

241 within
spent fuels coming from the 𝛽𝛽− decay of 𝑃𝑃𝑢𝑢

241 (𝑇𝑇1 2⁄ = 14.3 𝑦𝑦) its importance becomes
even higher. Thus, accurate information of the fission reaction rate of 𝐴𝐴𝐴𝐴

241 for an extended
energy region is needed and this reaction is included in the Nuclear Energy Agency (NEA) “High
Priority Request” (HPRL) [32] since target accuracies are not yet met by the existing data. The
importance of the measurement is also highlighted in the OECD/NEA WPEC Subgroup 26 Final
Report [33] that summarizes the needs and target accuracies for nuclear data.

In view of all the above, the 𝐴𝐴𝐴𝐴

241 (𝑛𝑛, 𝑓𝑓) reaction has been studied at the first experimental
area (EAR1) and in the Experimental Area 2 (EAR2) of the n_TOF facility at CERN. The
adopted experimental setup and data acquisition of a 𝐴𝐴𝐴𝐴

241 (𝑛𝑛, 𝑓𝑓) measurement at EAR2
are discussed below. More information can be found in [34].

13

Samples

Six samples of 𝐴𝐴𝐴𝐴

241 (98% purity) were used with a total mass of 0.78 𝐴𝐴𝑚𝑚 (~4.6 𝜇𝜇𝑚𝑚/𝑐𝑐𝐴𝐴2
per sample) and activity of ~0.1 𝐺𝐺𝐺𝐺𝐺𝐺. Additionally, for the determination of the neutron flux
two 𝛿𝛿

235 (0.26 𝐴𝐴𝑚𝑚, 0.30 𝐴𝐴𝑚𝑚) samples with ~9.9 𝜇𝜇𝑚𝑚/𝑐𝑐𝐴𝐴2 per sample and two 𝛿𝛿
235

(2.07 𝐴𝐴𝑚𝑚, 2.21 𝐴𝐴𝑚𝑚) samples with ~75.7 𝜇𝜇𝑚𝑚/𝑐𝑐𝐴𝐴2 per sample, were used as reference foils.
The sample material was in all cases electroplated in a surface 6 𝑐𝑐𝐴𝐴 on top of a thick
0.025 𝐴𝐴𝐴𝐴 aluminum backing.

Detectors

For the measurement, an array of ten in total Micromegas detectors was used, six for the
americium and four for the uranium reference samples (Figure 1.10). The sample-detector
modules were housed in a cylindrical aluminum fission chamber filled with a gas mixture of
Ar:CF4:isoC4H10 (88:10:2) at atmospheric pressure. During the measurement, the gas flow and
pressure were monitored and controlled with a dedicated flow regulation system. This way,
the gas pressure was kept constant ensuring stable gain conditions during the data-taking
period.

Figure 1.10: The stack of detectors and samples [18].

Data acquisition

The detector signals were stored as waveforms and digitized afterwards. The raw data for
each detector were recorded using a digital acquisition system [35] in flash Analog-to-Digital
Converters (ADC’s) with a 16 𝐴𝐴𝑐𝑐 time acquisition window.

14

Chapter 2

Theoretical calculations using GEF

In the Monte Carlo simulations the fission process and the fragment yields were calculated
with the GEF code and the rest of the particle transportation was handled by the GEANT4
toolkit. In this chapter the theoretical GEF calculations are described.

2.1 Dependence on the incident neutron energy

The dependence of the fragment yields on the incident neutron energy was examined. The
mass and element distributions were obtained for neutron beams of thermal, 1 meV, 1 eV, 1
keV, 1 MeV, 10 MeV energy as well as the EAR2 flux up to 15 MeV. In Figures 2.1 and 2.2 the
mass and element probability distributions are shown for the fissile nuclei 𝐴𝐴𝐴𝐴

242 and 𝛿𝛿
236 ,

respectively. For low incident energies, fragments of different mass are produced and the
fission is asymmetric, while it becomes more symmetric with increasing energy. This
observation is in agreement with the theory of the presence of two independent deformation
paths that was introduced in Chapter 1.

(a)

15

(b)

Figure 2.1: Element distribution of (a) 𝐴𝐴𝐴𝐴
242 and (b) 𝛿𝛿

236 fission products for different incident neutron
energies as obtained with the GEF code. For low energies the fission is asymmetric and it becomes more

symmetric with increasing energy.

(a)

16

(b)

Figure 2.2: Mass distribution of (a) 𝐴𝐴𝐴𝐴
242 and (b) 𝛿𝛿

236 fission products for different incident neutron energies
as obtained with the GEF code. For low energies the fission is asymmetric and it becomes more symmetric with
increasing energy.

2.2 Distributions of fission products

The distribution of fission product properties such as the atomic and mass number (Z, A
respectively), as well as the kinetic energy (K) post neutron evaporation can be obtained with
the GEF code. The element and mass distributions of 𝐴𝐴𝐴𝐴

242 and 𝛿𝛿
236 fission fragments

induced by a thermal neutron beam are displayed in Figures 2.3 and 2.4 respectively. The
mass of the heavy fragments is observed to be independent of the compound nucleus and
close to 140. On the contrary, for the light fragments, there is dispersion and the heavier the
nucleus, the heavier would be the light fragments. This can be explained by shell structure
effects and more specifically the presence of the doubly magic 𝑆𝑆𝑛𝑛

132 (𝑍𝑍 = 50,𝛮𝛮 = 82) that
dominates the mass split. As seen in Figure 2.3 there is a preference for the fissioning system
to form a nucleus with 𝑍𝑍 ≅ 50 and the remaining protons are given to the light fragment. In
Figure 2.5 the mass number of fission fragments against their kinetic energy, obtained by GEF,
is shown.

17

Figure 2.3 Atomic number distributions of 𝐴𝐴𝐴𝐴

242 and 𝛿𝛿
236 fission products for thermal incident neutrons

calculated with the GEF code. It is observed that the heavy fragments have the same atomic number independently
of the compound nucleus, whereas the light fragments grow heavier for heavier compound nuclei.

Figure 2.4: Mass distributions of 𝐴𝐴𝐴𝐴

242 and 𝛿𝛿
236 fission products for thermal incident neutrons, as calculated

with the GEF code. It is observed that heavy fragments have the same atomic number independently the
compound nucleus, whereas the heavier the nucleus is, the heavier are the light fragments are.

18

(a)

(b)

Figure 2.5: Mass number of fission products against their kinetic energy, as obtained from GEF, for (a) 𝐴𝐴𝐴𝐴
242 and

(b) 𝛿𝛿
236 fission products for thermal incident neutrons calculated with the GEF code.

19

Chapter 3

Monte Carlo simulations

Following the theoretical calculations with the GEF code and the study of the fission product
properties, Monte Carlo simulations of Micromegas detectors used for the study of

𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)
241 were performed, by combining the GEF code with the GEANT4 toolkit. More
specifically, the fission product properties were calculated by means of GEF and were used as
primaries to GEANT4, where the transportation of these ions was accomplished. The purpose
of these simulations was to better understand the behavior of the detector and examine the
influence of various parameters on the obtained energy spectrum.

3.1 Detector geometry and primary particle source

The geometry consisted of a Micromegas detector and a sample deposit, either 𝐴𝐴𝐴𝐴

241 or
 𝛿𝛿,

235 housed in a chamber filled with gas, as illustrated in Figure 3.1 and Figure 3.2. More
specifically, a sample of 𝐴𝐴𝐴𝐴

241 with mass 148.9 𝜇𝜇𝑚𝑚 (5.27 𝜇𝜇𝑚𝑚 𝑐𝑐𝐴𝐴2⁄) or 𝛿𝛿 235 with mass
297.7 𝜇𝜇𝑚𝑚 (10.53 𝜇𝜇𝑚𝑚 𝑐𝑐𝐴𝐴2⁄) with a 6 𝑐𝑐𝐴𝐴 diameter was placed on top of a 0.025 𝐴𝐴𝐴𝐴 thick
aluminum backing. The thickness of each sample was calculated to match the surface density
and total mass of the ones used in an 𝐴𝐴𝐴𝐴

241 fission cross-section measurement [34]. The
sample-backing configuration was housed in the center of a cylindrical aluminum chamber
with dimensions 30 𝑐𝑐𝐴𝐴 × 30 𝑐𝑐𝐴𝐴 (𝑜𝑜𝑖𝑖𝑎𝑎𝐴𝐴𝑀𝑀𝑑𝑑𝑀𝑀𝑟𝑟 × 𝑙𝑙𝑀𝑀𝑛𝑛𝑚𝑚𝑑𝑑ℎ) filled with a gas mixture of
Ar:CF4:isoC4H10 (88:10:2) at atmospheric pressure. Kapton windows 15 𝑐𝑐𝐴𝐴 in diameter were
placed at the entrance and exit of the chamber. Since the region of importance for the energy
deposition is the drift region, the amplification region was not included in the simulations.
Thus, the active gas volume was simulated to be 7 𝐴𝐴𝐴𝐴 in length and a 9.5 𝑐𝑐𝐴𝐴 in diameter.

Figure 3.1: The geometry of the Micromegas detector and the sample inside the fission chamber. An incident
neutron beam is also included in the visualization.

20

Figure 3.2: The geometry of the Micromegas detector and the sample inside the fission chamber used in the
simulations.

For the definition of the primary particles, a dedicated procedure was adopted. For each fissile
nuclei 𝐴𝐴𝐴𝐴

242 or 𝛿𝛿 236 and incident neutron energy, the properties of the fission fragments
after neutron emission (𝑍𝑍,𝐴𝐴) and their total kinetic energy (𝐾𝐾) were calculated by GEF. Then
the heavy or light fragment was randomly chosen. It was given starting coordinates and a
momentum direction that ensured uniform distribution inside the sample and uniform 2𝜋𝜋
emission towards the gas volume, as seen in Figure 3.3 and Figure 3.4. During the simulation,
the properties of the selected fragments (𝑍𝑍,𝐴𝐴,𝐾𝐾,) and whether heavy or light, as well as the
coordinates (𝑥𝑥,𝑦𝑦, 𝐻𝐻) and momentum �𝑝𝑝𝑥𝑥 ,𝑝𝑝𝑦𝑦 ,𝑝𝑝𝑧𝑧 � at their generation point, were stored for
further analysis.

Figure 3.3: Initial position of the fission fragments inside the sample volume. These are used as primary particles
at GEANT4 following a uniform distribution.

21

Figure 3.4: Initial momentum of the fission fragments used as primary particles at GEANT4 following a 2𝜋𝜋 uniform
momentum towards the gas volume.

3.2 A GEF/GEANT4 and a GEANT4 standalone simulation
comparison

Before the study of the Micromegas detector behavior, it is important to ensure the accuracy
of the simulation results. That way, any conclusion achieved can be trusted. Therefore, results
from the combination of the GEF code with the GEANT4 toolkit are compared with the ones
obtained from a GEANT4 standalone simulation. More specifically, the reaction 𝛿𝛿(𝑛𝑛, 𝑓𝑓)

235
with a thermal incident neutron beam is simulated using both methods. The detector
geometry and the sample are kept the same with only the primary particle source varied. With
GEANT4 standalone a thermal neutron beam is simulated, while with the GEF/GEANT4
combination, the reaction is calculated by GEF and the fragments produced are used as
primary particles in GEANT4.

The distributions describing the energy deposition and identity (𝑍𝑍,𝐴𝐴) of the detected particles
are compared in Figure 3.5 and Figure 3.6, respectively. A good agreement between the two
methods is observed. This agreement with the well established GEANT4 toolkit allows for the
simulations to be performed using GEF for the fission product properties. As a result,
computation speed is increased, since the probability of a fission induced reaction is small in
GEANT4 when neutrons are used as primary particles. Finally, it should be noted that a similar
comparison of an 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 reaction was not possible as the GEANT4 standalone
simulation could not produce sufficient statistics with reasonable CPU time. The reason
behind this could be the change of physics libraries used to describe the fission process of
transuranic elements, indicating another advantage of the GEF code, which provides fission
observables for a range of isotopes.

22

Figure 3.5: Energy deposition of the detected particles.

(a)

23

(b)

Figure 3.6: (a) Atomic number and (b) mass distribution of the detected particles

3.3 Energy deposition of light and heavy fission products

During the simulations, the properties of the fission product used as the primary particle were
stored, including whether it was the light or heavy fragment of the compound nucleus. This
information was vital to better understand how differently heavy and light fragments interact
with the gas.

The energy deposition of heavy and light fragments from an 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 reaction induced by
thermal neutrons can be seen in Figure 3.7. For comparison, the energy deposition of all the
fragments is plotted as well. It is observed, that the peak seen in higher energies is due to the
energy deposition of the light fragments. Additionally, the percent of the deposited energy of
the fragments compared to their initial kinetic energy is shown in Figure 3.8. The light
fragments lose less energy than the heavy ones.

24

Figure 3.7: Energy deposition of the heavy and light fission fragments (green and blue respectively) from the

𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)
241 reaction induced by thermal neutrons. The energy deposition of all the fragments (red) is also plotted.
The distributions were normalized to the same number of detected particles.

Figure 3.8: Percent of the deposited energy compared to the initial kinetic energy for the heavy and light fission
fragments from the 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 reaction induced by thermal neutrons. The distributions were normalized to the
same number of detected particles.

25

3.3 Effect of the surface homogeneity of the target

With simulations, the exact reproduction of experimental conditions is impossible. For
instance, the surface of the samples used at a measurement of 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 cross-section
[34] was discovered to be non-homogeneous. The two most extreme target configurations
(Figure 3.9) were simulated to determine whether a deviation from a homogeneous surface
of a sample affected the energy deposition of the fragments and should be taken into account.

Figure 3.9: Sample configurations from the 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 measurement at n_TOF. (Courtesy of Eleme Zinovia)
[34]

Each simulated sample configuration consisted of two parts: Part 1 and Part 2. More
specifically, the first simulated sample configuration (Sample B) consisted of a cylindrical
volume with the addition of a ring and the second one (Sample C) was a cylindrical volume
with another cylinder on top. For comparison the default geometry of a homogeneous surface
of the target (Sample A) was used, as well. In all geometries, the total mass of 148.9 𝜇𝜇𝑚𝑚 and
13.6 𝑚𝑚𝑟𝑟 𝑐𝑐𝐴𝐴3⁄ density were the same. The exact dimensions of the samples can be seen in
Table 3.1 and Figure 3.10. It should be noted that in Sample B and Sample C only the volume
describing the second part (Part 2) was different. As a result, a possible dependence on the
shape of that volume could be detected.

Sample Part 1 Part 2
 Shape Rmin

(cm)
Rmax

(cm)
Height
(nm)

 Shape Rmin

(cm)
Rmax

(cm)
Height
(nm)

Sample A Cylinder 0 3.00 3.85 - - - -
Sample B Cylinder 0 3.00 2.85 Ring 2.00 3.00 1.80
Sample C Cylinder 0 3.00 2.85 Cylinder 0 1.60 3.52

Table 3.1: Dimensions of the simulated sample configurations used to describe a non-homogeneous target
configuration. For comparison a homogeneous sample is included, as well. Each configuration consisted of a
homogeneous part (Part 1) and a non-homogeneous one (Part 2).

26

(a)

(b)

(c)

Figure 3.10: Sample configurations used in the simulation: (a) Sample A: a cylinder, (b) Sample B: a cylinder with a
ring on top, (c) Sample C: a cylinder with another cylinder. Each configuration consisted of two parts: Part 1 (red
volume) and Part 2 (green volume).

27

The simulated energy deposition of fission fragments from all the sample configurations can
be found in Figure 3.7. It should be noted that in the case of Sample C, in which a cylinder is
added, slightly less energy deposition is observed. A possible explanation could be that the
height of the added volume is increased compared to the other sample geometries. Therefore,
if a particle was generated at the bottom of that cylinder and propagated in the forward
direction, it would cover more distance, thus losing energy inside the sample before being
detected. However, these changes in energy deposition are only very slight and, overall, no
significant effect of the target shape is observed on the spectrum. Therefore, we can proceed
with the analysis without having to exactly reproduce the target configuration.

Figure 3.7: Simulated energy deposition of the fission fragments from an 𝐴𝐴𝐴𝐴(𝑛𝑛,𝑓𝑓)

241 reaction induced by thermal
neutrons. Two non-homogeneous surfaces of a sample were simulated: Sample B (red line) and Sample C (blue
line). For comparison a homogeneous surface (Sample A, black line) was also examined.

3.4 Effect of the chemical composition of the target

Another effect that was studied was the dependence of the fragments energy deposition on
the target chemical composition. Humidity can cause an increase in the oxygen concentration
of the samples, thus leading to the production of oxides. To investigate whether the presence
of these oxides can affect the obtained results, simulations were performed using various
target chemical compositions. More specifically, for the 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 and 𝛿𝛿(𝑛𝑛, 𝑓𝑓)
235

reactions, the samples of each simulation consisted of a different oxide. In Table 3.2 and Table
3.3, a list with the main characteristics of the samples is provided [36, 37]. The incident
neutron energy was chosen to be in the thermal region but also as high as 10 MeV so as to
examine a possible dependence on the incident energy. For comparison, the isotopic samples
as defined from the preparation procedure at an n_TOF experiment were also simulated. The
energy deposition of the fragments can be seen in Figure 3.8 and Figure 3.9 for the reaction

𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)
241 and 𝛿𝛿(𝑛𝑛, 𝑓𝑓)

235 respectively. The different types of oxides in the sample did not
significantly affect the energy deposition of the fragments. Therefore, the exact knowledge of
the chemical composition is not required.

28

Sample Mass
(𝝁𝝁𝝁𝝁)

Density
(𝝁𝝁/𝒄𝒄𝑨𝑨𝟑𝟑)[36]

Thickness
(𝒏𝒏𝑨𝑨)

Composition
(%)

𝐴𝐴𝐴𝐴
 148.9 13.67 3.85 99.9838 𝐴𝐴𝐴𝐴

241
 0.0162 𝐴𝐴𝐴𝐴

242
 0.0002 𝐴𝐴𝐴𝐴

243
𝐴𝐴𝐴𝐴
 𝑂𝑂2 168.7 11.68 5.11 88.2812 𝐴𝐴𝐴𝐴

 11.7188 𝑂𝑂

𝐴𝐴𝐴𝐴2
 𝑂𝑂3 163.8 11.77 4.92 90.9457 𝐴𝐴𝐴𝐴

 9.0543 𝑂𝑂

Table 3.2: Main characteristics of the Am samples used in the simulations.

Sample Mass

(𝝁𝝁𝝁𝝁)
Density

(𝝁𝝁/𝒄𝒄𝑨𝑨𝟑𝟑)[36]
Thickness

(𝒏𝒏𝑨𝑨)
Composition

(%)
𝛿𝛿 297.9 18.97 5.55 0.035973 𝛿𝛿 234
 99.9336 𝛿𝛿 235
 0.009629 𝛿𝛿 236
 0.02073 𝛿𝛿 238

𝛿𝛿 𝑂𝑂2 338.5 10.95 10.93 88.0174 𝛿𝛿
 11.9826 𝑂𝑂

Table 3.3: Main characteristics of the U samples used in the simulations.

29

(a)

(b)

Figure 3.8: Simulated energy deposition of fission fragments from the 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)

241 reaction induced by (a)
thermal and (b) 10 MeV neutrons for different target chemical composition.

30

(a)

(b)

Figure 3.9: Simulated energy deposition of fission fragments from the 𝛿𝛿(𝑛𝑛, 𝑓𝑓)

235 reaction induced by (a) thermal
and (b) 10 MeV neutrons for different target chemical composition.

31

Chapter 4

Micromegas detector response function

The simulations performed so far, provided an insight concerning the energy deposition of the
fission fragments in the gas. In this chapter, the simulation results are combined with the
appropriate response function, in an attempt to reproduce the experimentally observed pulse
height spectrum, with emphasis in the low energy region.

The exact response function of the Micromegas detector is yet unknown. Therefore, a
qualitative approach was adopted. More specifically, a user-defined function was applied to
the simulation results (output) with respect to the energy deposition of the fission fragments
inside the active gas volume of the detector. The purpose of this function was to reproduce
the behavior of the detection set-up and convert the energy deposition E into the expected
amplitude in ADC channel. A description of this approach is discussed below.

A detector cannot record the exact value of the deposited energy. On the contrary, a
distribution is obtained. As a first approximation, a Gaussian one was used with the deposited
energy E as the distribution’s mean value and an energy-depended function as the deviation
𝜎𝜎(𝛦𝛦) (resolution function). Additionally, voltage is proportional to the energy. Thus, there is a
linear dependence between them. As a result, the function is of the form:

𝐴𝐴𝐴𝐴𝐶𝐶 𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑛𝑛𝑀𝑀𝑙𝑙 = 𝐴𝐴 + 𝐺𝐺 × 𝐺𝐺𝑎𝑎𝑢𝑢𝑐𝑐𝑐𝑐(𝐸𝐸,𝜎𝜎(𝛦𝛦)) (4.1)

The values of the parameters 𝐴𝐴,𝐺𝐺 and the function 𝜎𝜎(𝛦𝛦) were determined by the user.

An important consideration is that, in a detection set-up, the recorded pulses may correspond
to the pile-up of more than one event. Thus, the recorded amplitude distribution is distorted
compared with the true event spectrum. Pile-up occurs, when two pulses are so close together
that they are treated as a single pulsed by the analysis system. The superposition of pulses
will lead to a combined pulse with an apparent amplitude equal to the sum of the two
individual amplitudes. Lesser degrees of overlap will give a combined pulse with an amplitude
somewhat less than the sum. [38].

The analysis procedure we opted for in this work is described below. The simulation output
events were read in pairs and the time difference between the two events of a pair was
estimated. To achieve this, histograms with the recorded time differences between two
events for Micromegas detectors from an 𝐴𝐴𝐴𝐴

241 fission cross-section measurement [34]
were used. More specifically, a fitting and extrapolation of the histogram matching the
simulated sample and energy region of the neutron beam, as seen in Figure 4.1, provided a
function with the possible time differences. A random number following this function
determined the time difference between the events. If that time was higher than a threshold
set by the user, the events were considered as separate and their energy was converted to
the expected ADC channel separately. On the contrary, if it was lower, they were considered
as a single event with its energy the sum of the energies that the original events had.

32

(a)

(b)

Figure 4.1: The function describing the time differences between two events for a Micromegas detector with:
(a) 𝐴𝐴𝐴𝐴

241 sample and (b) 𝛿𝛿 235 used in the simulations.

33

Chapter 5

Results

The procedure described in the previous chapter was applied for 𝐴𝐴𝐴𝐴

241 and 𝛿𝛿 235 samples
and the obtained results were compared with experimental amplitude spectra from the same

𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑓𝑓)
241 measurements at n_TOF [34]. During the analysis the values of the user-defined
threshold as well as the parameters 𝐴𝐴,𝐺𝐺 and the function 𝜎𝜎 in eq. 4.1 were varied until a
satisfying reproduction of the experimental amplitude spectra was achieved. The emphasis
was given on the low energy region. Moreover, to take into consideration a possible
dependence of the detector response function on the incident neutron energy, different
energy regions of the neutron beam were examined. As seen in Figures 5.1 and Figure 5.2 the
basic characteristics of the experimental spectrum, i.e. the low amplitude region that
corresponds to small energy deposition, the position of the peaks and the tail in higher
amplitude ADC channels due to pile-up, are well reproduced. However, in the simulation
spectra, an overestimation followed by an underestimation between the channels 200 − 250
and 250 − 300, respectively, is observed. A possible explanation might be that, in the analysis
so far, pile-up was considered as a first approach, a combined pulse with an amplitude equal
to the sum of the two original pulses. Different degrees of overlapping, however, can lead to
an amplitude smaller than the sum, so this first approach is not a perfect approximation.
Therefore, a more detailed description of the pile-up process that includes different degrees
of overlapping might sufficiently overcome this inconsistency.

It should be noted, the work performed provided a satisfying reproduction of the
experimental amplitude spectrum in the low energy region. This is important for the accurate
estimation of the needed correction factors that correspond to the adopted software
thresholds set in general and in any n_TOF fission data analysis process. For instance, the
amplitude cut correction factor can be calculated, by estimating the expected fission counts
that lied below the applied amplitude threshold. Another correction factor that can be
estimated through this work is the pile-up correction factor, seeing how the original events
from the simulation are stored. If the tail in the high amplitude region results from pile-up,
the number of events that have been summed can then be estimated leading to the
estimation of the correction factor.

34

35

36

Figure 5.1: Comparison between experimental and simulated 𝐴𝐴𝐴𝐴

241 amplitude spectra for various incident
neutron energies. The energy used for GEF, as well as the experimental energy ranges, are indicated.

37

38

39

Figure 5.2: Comparison between experimental and simulated 𝛿𝛿

235 amplitude spectra for various incident neutron
energies. The energy used for GEF, as well as the experimental energy ranges, are indicated.

40

Conclusions

In this thesis, extended simulations of Micromegas detectors were performed. The fission
process and fission fragments yield were calculated by means of the GEF code and the rest of
the particle transportation was accomplished through the GEANT4 toolkit. The results from
the combination of the GEF code with GEANT4 were in agreement with the ones of a
standalone GEANT4 simulation. Additionally, the energy deposition of light and heavy fission
products was studied and no strong dependence of the target homogeneity and chemical
composition was observed on the fission products energy deposition. Finally, the simulation
results with respect to the energy deposition of fission products within the active gas volume
of the detector were combined with the appropriate response function, taking pile-up events
into consideration. A satisfying reproduction of the low amplitude region of the
experimentally observed spectrum that corresponds to small energy deposition was achieved.
Further improvement of the analysis with a more detailed description of the pile-up process
that includes different degrees of overlapping may overcome any inconsistency.

41

Appendix A

ROOT analysis script

This routine reads the GEF output and prepares a file with the fission products properties.
This file is read by the GEANT4 application used as a primary particle source. The programs
were written in C++ and can be used within ROOT's interpreter.

//--
{
 gROOT->Reset();

 #include "Riostream.h"
 #include "TMath.h"

 ifstream in;
 in.open("GEFAm.dat");
 ofstream out;
 out.open("GEFAm_out.dat");

 Float_t Z1=0., Z2=0., A1pre=0. ,A2pre=0., A1post=0., A2post=0., I1pre=0., I2pre=0.,
I1gs=0., I2gs=0., Eexc1=0., Eexc2=0., n1=0., n2=0., TKEpre=0., TKEpost=0.;
 Float_t E1post=0., E2post=0.;

 Int_t counter1=0;

while(in>>Z1>>Z2>>A1pre>>A2pre>>A1post>>A2post>>I1pre>>I2pre>>I1gs>>I2gs>>Eexc1>>
Eexc2>>n1>>n2>>TKEpre>>TKEpost){
 counter1++;
 }

 cout<<"Fission Events in the input file="<<counter1<<endl;

 in.close();
 in.open("GEFAm.dat");

 Int_t counter2=0;
 while(
in>>Z1>>Z2>>A1pre>>A2pre>>A1post>>A2post>>I1pre>>I2pre>>I1gs>>I2gs>>Eexc1>>Eexc2
>>n1>>n2>>TKEpre>>TKEpost){

 E1post = (A2post*TKEpost)/(A1post+A2post);
 E2post = (A1post*TKEpost)/(A1post+A2post);

out<<Z1<<"\t\t"<<A1post<<"\t\t"<<E1post<<"\t\t"<<Z2<<"\t\t"<<A2post<<"\t\t"<<E2post<
<endl;
 counter2++;
 }
 cout<<"Fission Events in the output file="<<counter2<<endl;

42

 in.close();
 out.close();
 }

//--

241 Am
//--
#include "Riostream.h"
#include "TMath.h"
#include "TRandom3.h"
#include "TFile.h"
#include <time.h>

void GEFPrims_Am()
{

 gROOT->Reset();
 TRandom3 *gg = new TRandom3(time(NULL));

 ifstream in;
 in.open("GEFAm_out.dat");
 ofstream out;
 out.open("GEFAm_prim.dat");

 // primaries parameters
 Double_t Z1=0.,A1=0.,E1=0.,Z2=0.,A2=0.,E2=0.;
 Double_t Z=0.,A=0.,Ekin=0.,px0=0.,py0=0.,pz0=0.,x0=0.,y0=0.,z0=0.;
 Int_t ff=0;//output light=0, heavy=1
 Int_t totcounter=0,lcounter=0,hcounter=0; //light, heavy ff counter
 Int_t c0=0,c1=0;

 while(in>>Z1>>A1>>E1>>Z2>>A2>>E2){
 Int_t randNum = rand()%2;
 cout<<randNum<<endl;
 if(randNum){
 A = A2;
 Ekin = E2;
 ff=1; // heavy
 c1++;
 cout<<"1:"<<randNum<<" "<<ff<<endl;
 }
 else{
 Z = Z1;
 A = A1;
 Ekin = E1;
 ff=0;
 c0++;
 cout<<"0:"<<randNum<<" "<<ff<<endl;
 }

 if(ff){

43

 hcounter++;
 }
 else{
 lcounter++;
 }
 totcounter++;

 Double_t pi = TMath::Pi();
 Double_t phi= 2.*pi* (gg->Uniform());
 Double_t cosTheta = 1. - (gg->Uniform());
 Double_t sinTheta = sqrt(1. - cosTheta * cosTheta);
 px0= sinTheta * cos(phi);
 py0= sinTheta * sin(phi);
 pz0 =cosTheta;

 Double_t Amtc = 0.0000003852422, Altc = 0.0025;
 Double_t Radius = 3.0; //
 Double_t dx0 = 6., dy0 = 6., dz0 = Amtc;
 while(true){
 x0=((gg->Uniform())*dx0)-3.0;
 y0=((gg->Uniform())*dy0)-3.0;
 z0=((gg->Uniform())*dz0)+(Altc/2.);
 if(((x0*x0)+(y0*y0)) <= (Radius*Radius)){
 break;
 }
 }
out<<Z<<"\t"<<A<<"\t"<<Ekin<<"\t"<<px0<<"\t"<<py0<<"\t"<<pz0<<"\t"<<x0<<"\t"<<y0<<"
\t"<<z0<<"\t"<<ff<<endl;
 }
 cout<<"total="<<totcounter<<" light="<<lcounter<<" heavy="<<hcounter<<" c0="<<c0<<"
c1="<<c1<<endl;
 in.close();
 out.close();
}
/--

235 U
//--
#include "Riostream.h"
#include "TMath.h"
#include "TRandom3.h"
#include "TFile.h"
#include <time.h>

void GEFPrims_U()
{
 gROOT->Reset();
 TRandom3 *gg = new TRandom3(time(NULL));

 ifstream in;
 in.open("GEFUthermal_out.dat");
 ofstream out;

44

 out.open("GEFUthermal_prim.dat");

 Double_t Z1=0.,A1=0.,E1=0.,Z2=0.,A2=0.,E2=0.;
 Double_t Z=0.,A=0.,Ekin=0.,px0=0.,py0=0.,pz0=0.,x0=0.,y0=0.,z0=0.;
 Int_t ff=0;
 Int_t totcounter=0,lcounter=0,hcounter=0;
 Int_t c0=0,c1=0;

 while(in>>Z1>>A1>>E1>>Z2>>A2>>E2){
 Int_t randNum = rand()%2;
 cout<<randNum<<endl;
 if(randNum){
 Z = Z2;
 A = A2;
 Ekin = E2;
 ff=1; // heavy
 c1++;
 cout<<"1:"<<randNum<<" "<<ff<<endl;
 }
 else{
 Z = Z1;
 A = A1;
 Ekin = E1;
 ff=0;
 c0++;
 cout<<"0:"<<randNum<<" "<<ff<<endl;
 }

 if(ff){
 hcounter++;
 }
 else{
 lcounter++;
 }

 totcounter++;

 Double_t pi = TMath::Pi();
 Double_t phi= 2.*pi* (gg->Uniform());
 Double_t cosTheta = 1. - (gg->Uniform());
 Double_t sinTheta = sqrt(1. - cosTheta * cosTheta);
 px0= sinTheta * cos(phi);
 py0= sinTheta * sin(phi);
 pz0 =cosTheta;

 Double_t Amtc = 0.0000005550334, Altc = 0.0025;
 Double_t Radius = 3.0;
 Double_t dx0 = 6., dy0 = 6., dz0 = Amtc;
 while(true){
 x0=((gg->Uniform())*dx0)-3.0;
 y0=((gg->Uniform())*dy0)-3.0;

45

 z0=((gg->Uniform())*dz0)+(Altc/2.);
 if(((x0*x0)+(y0*y0)) <= (Radius*Radius)){
 break;
 }
 }

out<<Z<<"\t"<<A<<"\t"<<Ekin<<"\t"<<px0<<"\t"<<py0<<"\t"<<pz0<<"\t"<<x0<<"\t"<<y0<<"
\t"<<z0<<"\t"<<ff<<endl;
 }
 cout<<"total="<<totcounter<<" light="<<lcounter<<" heavy="<<hcounter<<" c0="<<c0<<"
c1="<<c1<<endl;
 in.close();
 out.close();
}

46

Appendix B

GEANT4 simulation code

The GEANT4 simulation code.

//--

Main.cc (241Am)
//--
#include "G4RunManager.hh"
#include "G4VisExecutive.hh"
#include "G4UImanager.hh"
#include "G4UIterminal.hh"
#include "globals.hh"
#include "G4ios.hh"
#include "XriDetectorConstruction.hh"
#include "QBBC.hh"
#include "XriPrimaryGeneratorAction.hh"
#include "XriRunAction.hh"
#include "XriEventAction.hh"
#include "XriSteppingAction.hh"
#include <stdlib.h> //library ths c++
#include "G4ios.hh"
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include "Randomize.hh"
#include "time.h"
#include "vars.h"

using namespace std;

ofstream outfilem;

// declare global variables
G4double Depos, evtNo;
const int GEF_SIZE = 1000000;
G4double eventspicked[GEF_SIZE];
G4double heavylight[GEF_SIZE];
G4double ffZ[GEF_SIZE];
G4double ffA[GEF_SIZE];

struct sevent totalevents[GEF_SIZE];

int main(int argc, char** argv)
{
 G4double ffid = 0.;
 G4double Z = 0.;
 G4double A = 0.;

47

 G4double Ekin=0.;
 G4double px0 = 0.;
 G4double py0 = 0.;
 G4double pz0 = 0.;
 G4double x0 = 0.;
 G4double y0 = 0.;
 G4double z0 = 0.;
 G4double ff = 0.;

 ifstream in;
 in.open("GEFAm_prim.dat");

 for(int i=0; i<GEF_SIZE; i++){
 totalevents[i].ffid = i+1;

in>>totalevents[i].Z>>totalevents[i].A>>totalevents[i].Ekin>>totalevents[i].px0>>totalevents[
i].py0>>totalevents[i].pz0>>totalevents[i].x0>>totalevents[i].y0>>totalevents[i].z0>>totaleve
nts[i].ff;
 }

 in.close();

 outfilem.close();

 for(int i=0; i<GEF_SIZE; i++){
 eventspicked[i]=0.; //history of picked events is reset before each run
 }

 // check if eventspicked is reset before each execution of programme
 G4double mres =0.;
 for(int i=0; i<GEF_SIZE; i++){
 if(eventspicked[i]){ //an event is not reset
 mres ++;
 }
 }
 if(mres){
 G4cout<<"main.cc event is not reset!!!"<<endl;
 }
 else{
 G4cout<<"main.cc events all reset!!!"<<endl;
 }

 //choose the Random engine
 CLHEP::HepRandom::setTheEngine(new CLHEP::RanecuEngine());
 //set random seed with system time
 G4long seed = time(NULL);
 CLHEP::HepRandom::setTheSeed(seed);

 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

48

 // set mandatory initialization classes
 XriDetectorConstruction *XriDet = new XriDetectorConstruction;
 runManager->SetUserInitialization(XriDet);
 // Physics list
 G4VModularPhysicsList* physicsList = new QBBC;
 physicsList->SetVerboseLevel(1);
 runManager->SetUserInitialization(physicsList);

 #ifdef G4VIS_USE
 G4VisManager *visManager = new G4VisExecutive;
 visManager->Initialize();
 #endif

 // set mandatory user action class
 runManager->SetUserAction(new XriPrimaryGeneratorAction);

 // set optional user action class
 runManager->SetUserAction(new RunActionXri);

 XriEventAction *eventAction = new XriEventAction;
 runManager->SetUserAction(eventAction);

 runManager->SetUserAction(new XriSteppingAction(XriDet)); //,eventAction));

 // Initialize G4 kernel
 runManager->Initialize();

 // get the pointer to the UI manager and set verbosities
 G4UImanager* XUI = G4UImanager::GetUIpointer();
 if (argc==1)
 {
 G4UIsession *XriSession = new G4UIterminal;

 XUI->ApplyCommand("/run/verbose 0");
 XUI->ApplyCommand("/event/verbose 0");
 XUI->ApplyCommand("/tracking/verbose 0");
 XriSession->SessionStart();
 delete XriSession;
 }
 else
 {
 G4String command = "/control/execute ";
 G4String fileName = argv[1]; // giati 1 ki oxi 0 ?
 XUI->ApplyCommand(command+fileName);
 }

 // job termination

 #ifdef G4VIS_USE
 delete visManager;

49

 #endif

 delete runManager;

 return 0;
}

//--

Main.cc (235U)
//--
#include "G4RunManager.hh"
#include "G4VisExecutive.hh"
#include "G4UImanager.hh"
#include "G4UIterminal.hh"
#include "globals.hh"
#include "G4ios.hh"
#include "XriDetectorConstruction.hh"
#include "QGSP_BIC_HP.hh"
#include "XriPrimaryGeneratorAction.hh"
#include "XriRunAction.hh"
#include "XriEventAction.hh"
#include "XriSteppingAction.hh"
#include <stdlib.h> //library ths c++
#include "G4ios.hh"
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include "Randomize.hh"
#include "time.h"
#include "vars.h"

using namespace std;

ofstream outfilem;

// declare global variables
G4double Depos, evtNo;
const int GEF_SIZE = 1000000;
G4double eventspicked[GEF_SI
Main.cc (235 U)
#include "G4RunManager.hh"
#include "G4VisExecutive.hh"
#include "G4UImanager.hh" ZE];
G4double heavylight[GEF_SIZE];
G4double ffZ[GEF_SIZE];
G4double ffA[GEF_SIZE];

struct sevent totalevents[GEF_SIZE];

50

int main(int argc, char** argv)
{
 G4double ffid = 0.;
 G4double Z = 0.;
 G4double A = 0.;
 G4double Ekin=0.;
 G4double px0 = 0.;
 G4double py0 = 0.;
 G4double pz0 = 0.;
 G4double x0 = 0.;
 G4double y0 = 0.;
 G4double z0 = 0.;
 G4double ff = 0.;

 // read GEF output
 ifstream in;
 in.open("GEFU_prim.dat");

 for(int i=0; i<GEF_SIZE; i++){
 totalevents[i].ffid = i+1;

in>>totalevents[i].Z>>totalevents[i].A>>totalevents[i].Ekin>>totalevents[i].px0>>totalevents[
i].py0>>totalevents[i].pz0>>totalevents[i].x0>>totalevents[i].y0>>totalevents[i].z0>>totaleve
nts[i].ff;
 }

 in.close();

 // fill array with picked events aka history
 for(int i=0; i<GEF_SIZE; i++){
 eventspicked[i]=0.;
 }

 // check if eventspicked is reset before each execution of programme
 G4double mres =0.;
 for(int i=0; i<GEF_SIZE; i++){
 if(eventspicked[i]){ //an event is not reset
 mres ++;
 }
 }
 if(mres){
 G4cout<<"main.cc event is not reset!!!"<<endl;
 }
 else{
 G4cout<<"main.cc events all reset!!!"<<endl;
 }
 }

 //choose the Random engine
 CLHEP::HepRandom::setTheEngine(new CLHEP::RanecuEngine());
 //set random seed with system time

51

 G4long seed = time(NULL);
 CLHEP::HepRandom::setTheSeed(seed);

 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // set mandatory initialization classes
 XriDetectorConstruction *XriDet = new XriDetectorConstruction;
 runManager->SetUserInitialization(XriDet);
 // Physics list
 G4VModularPhysicsList* physicsList = new QGSP_BIC_HP;
 physicsList->SetVerboseLevel(1);
 runManager->SetUserInitialization(physicsList);

 #ifdef G4VIS_USE
 G4VisManager *visManager = new G4VisExecutive;
 visManager->Initialize();
 #endif

 // set mandatory user action class
 runManager->SetUserAction(new XriPrimaryGeneratorAction);

 // set optional user action class
 runManager->SetUserAction(new RunActionXri);

 XriEventAction *eventAction = new XriEventAction;
 runManager->SetUserAction(eventAction);

 runManager->SetUserAction(new XriSteppingAction(XriDet));

 // Initialize G4 kernel
 runManager->Initialize();

 // get the pointer to the UI manager and set verbosities
 G4UImanager* XUI = G4UImanager::GetUIpointer();
 if (argc==1)
 {
 G4UIsession *XriSession = new G4UIterminal;
 XUI->ApplyCommand("/run/verbose 0");
 XUI->ApplyCommand("/event/verbose 0");
 XUI->ApplyCommand("/tracking/verbose 0");
 XriSession->SessionStart();
 delete XriSession;
 }
else
 {
 G4String command = "/control/execute ";
 G4String fileName = argv[1];
 XUI->ApplyCommand(command+fileName);
 }

52

 // job termination

 #ifdef G4VIS_USE
 delete visManager;
 #endif

 delete runManager;

 return 0;
}

//--

vars.h
//--
/*--
VARS.H
--
--*/
#ifndef vars_h
#define vars_h 1

#include "globals.hh"

struct sevent{
 G4double ffid;
 G4double Z;
 G4double A;
 G4double Ekin;
 G4double px0;
 G4double py0;
 G4double pz0;
 G4double x0;
 G4double y0;
 G4double z0;
 G4double ff;
};

extern struct sevent totalevents[];

extern G4double eventspicked[];

extern G4double heavylight[];

extern G4double ffZ[];

extern G4double ffA[];

extern const int GEF_SIZE;

#endif

53

XriDetectorConstruction.cc

#include "XriDetectorConstruction.hh"
#include "G4SDManager.hh"
#include "G4Element.hh"
#include "G4Material.hh"
#include "G4Box.hh"
#include "G4Tubs.hh"
#include "G4LogicalVolume.hh"
#include "G4ThreeVector.hh"
#include "G4PVPlacement.hh"
#include "G4UnitsTable.hh"
#include "globals.hh"
#include "G4SystemOfUnits.hh"
#include "G4PhysicalConstants.hh"

#include "G4VisAttributes.hh"
#include "G4Colour.hh"

XriDetectorConstruction::XriDetectorConstruction()
{;}

XriDetectorConstruction::~XriDetectorConstruction()
{;}

G4VPhysicalVolume* XriDetectorConstruction::Construct()
{

G4UnitDefinition::BuildUnitsTable();

//============================ elements ============================//

 G4double a;
 G4double z;
 // G4int iz, in;
 G4double density;
 G4String name, symbol;
 G4int ncomponents;
 G4double fractionmass;
 G4int natoms;
// G4double temperature, pressure;

 a = 39.948*g/mole;
 G4Element* elAr = new G4Element(name="Argon", symbol=" F", z= 9., a);

 a = 18.998*g/mole;
 G4Element* elF = new G4Element(name="Fluorine", symbol=" F", z= 9., a);

 a = 12.011*g/mole;

54

 G4Element* elC = new G4Element(name="Carbon",symbol=" C" , z= 6., a);

 a = 1.008*g/mole;
 G4Element* elH = new G4Element(name="Hydrogen", symbol=" H" , z= 1., a);

 a = 15.999*g/mole;
 G4Element* elO = new G4Element(name="Oxygen", symbol=" O" , z= 8., a);

 a = 14.007*g/mole;
 G4Element* elN = new G4Element(name="Nitrogen",symbol=" N" , z= 7., a);

 G4double iz, in;
 G4Isotope* isoU235 = new G4Isotope(name="U235", iz=92, in=235, a = 235.043*g/mole);

 G4Element* elenrichedU = new G4Element("enrichedU", "U" ,ncomponents=1);
 elenrichedU->AddIsotope(isoU235, fractionmass=100.*perCent);

 /* G4Isotope* Am241 = new G4Isotope(name="241Am", iz=95, in=241, a =
241.056*g/mole);
 */

//========================materials======================================//

// ---------- air of Micro_Megas

 density = 1.661*mg/cm3;
 G4Material *ArGas = new G4Material(name="ArGas",density,ncomponents=1);
 ArGas->AddElement(elAr, fractionmass=100.0*perCent);

 density = 3.6602189*mg/cm3;
 G4Material* CF4Gas = new G4Material(name="CF4Gas",density,ncomponents=2);
 CF4Gas->AddElement(elC, natoms=1);
 CF4Gas->AddElement(elF, natoms=4);

 density = 2.489*mg/cm3;
 G4Material* C4H10Gas = new G4Material(name="C4H10Gas",density,ncomponents=2);
 C4H10Gas->AddElement(elC, natoms=4);
 C4H10Gas->AddElement(elH, natoms=10);

 density = 1.87748189*mg/cm3;
 G4Material* MegasGas = new G4Material(name="MegasGas", density,ncomponents=3);
 MegasGas->AddMaterial(ArGas,fractionmass=77.92*perCent);
 MegasGas->AddMaterial(CF4Gas,fractionmass=19.51*perCent);
 MegasGas->AddMaterial(C4H10Gas,fractionmass=2.58*perCent);

 // ------- defining Al backing

 a = 26.981539*g/mole;

55

 density = 2.70*g/cm3;
 G4Material* Al = new G4Material(name="Al", z=13., a, density);

 //----------defining Air
 density = 1.29*mg/cm3;
 G4Material *Air = new G4Material(name="Air ",density,ncomponents=2);
 Air->AddElement(elO, fractionmass=30.0*perCent);
 Air->AddElement(elN, fractionmass=70.0*perCent);

 //-----------defining source 235U

 density = 18.97*g/cm3;
 G4Material* U235 = new G4Material(name="U235", density,ncomponents=1);
 U235->AddElement(elenrichedU,fractionmass=100.0*perCent);

 //----------defining Kapton

 density = 1.43*g/cm3;
 G4Material *Kapton = new G4Material(name="Kapton",density,ncomponents=4);
 Kapton->AddElement(elH, fractionmass=2.73*perCent);
 Kapton->AddElement(elC, fractionmass=72.13*perCent);
 Kapton->AddElement(elN, fractionmass=7.65*perCent);
 Kapton->AddElement(elO, fractionmass=17.49*perCent);

 //-------------defining Copper

 a = 63.546*g/mole;
 density = 8.94*g/cm3;
 G4Material* Copper = new G4Material(name="Copper", z=29., a, density);

 G4cout << "\n\n ####---#### \n";
 G4cout << "\n\t\t#### List of isotopes used #### \n";
// G4cout << *(G4Isotope::GetIsotopeTable());
 G4cout << "\n\n\n\n\t\t #### List of elements used #### \n";
 G4cout << *(G4Element::GetElementTable());
 G4cout << "\n\n\n\n\t\t #### List of materials used #### \n";
 G4cout << *(G4Material::GetMaterialTable());
 G4cout << "\n\n ####---#### \n";

 //================================== volumes =============================//
//------------------------------ beam line along z axis

 G4double startFi = 0.0*deg;
 G4double endFi = 360.0*deg;

//------------------------------ world volume

 G4double World_hx = 100./2.*cm;

56

 G4double World_hy = 100./2.*cm;
 G4double World_hz = 100./2.*cm;

 G4Box *World_box
 = new G4Box("World_box",World_hx,World_hy,World_hz);

 G4LogicalVolume *World_log
 = new G4LogicalVolume(World_box,Air,"World_log",0,0,0);

 G4VPhysicalVolume *World_phys
 = new G4PVPlacement(0,G4ThreeVector(),World_log,"World",0,false,0);

 //--------------- Al chamber

 G4double CAlthickness = 1.5*cm;
 G4double CAlOutR = 15.0*cm;
 G4double CAlInR = 0.0*cm;
 G4double CAlHalf = 30./2.*cm;

 G4Tubs *CAl_tube
 = new G4Tubs("CAl_tube",CAlInR,CAlOutR,CAlHalf,
 startFi,endFi);

 G4LogicalVolume *CAl_log
 = new G4LogicalVolume(CAl_tube,Al,"CAl_log",0,0,0);

 G4double Pos_x = 0.0*cm;
 G4double Pos_y = 0.0*cm;
 G4double Pos_z = 0.0*cm;
 G4VPhysicalVolume *CAlTube_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x,Pos_y,Pos_z),
 CAl_log,"CAlTube",World_log,false,0);

 //--------------Gas volume

 G4double GasInR = 0.0*cm;
 G4double GasOutR = CAlOutR - CAlthickness;
 G4double GasHalf = CAlHalf - CAlthickness;
 G4Tubs *Gas_tube
 = new G4Tubs("Gas_tube", GasInR, GasOutR, GasHalf, startFi, endFi);

 G4LogicalVolume *Gas_log
 = new G4LogicalVolume(Gas_tube, MegasGas, "Gas_log", 0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = 0.0*cm;
 G4VPhysicalVolume *Gas_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),

57

 Gas_log, "GasTube", CAl_log, false,0);

//--------------KUGas volume

 G4double KUGasInR = 0.0*cm;
 G4double KUGasOutR = 15/2.*cm;
G4double KUGasHalf = CAlthickness/2.;
 G4Tubs *KUGas_tube
 = new G4Tubs("KUGas_tube",KUGasInR, KUGasOutR, KUGasHalf, startFi, endFi);

 G4LogicalVolume *KUGas_log
 = new G4LogicalVolume(KUGas_tube, MegasGas, "KUGas_log", 0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = CAlHalf - CAlthickness/2.;
 G4VPhysicalVolume *KUGas_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),
 KUGas_log, "KUGasTube", CAl_log, false,0);
 //--------------- Kapton up

 G4double KapUOutR = KUGasOutR;
 G4double KapUInR = 0.0*cm;
 G4double KapUHalf = 25./2.*um;

 G4Tubs *KapU_tube
 = new G4Tubs("KapU_tube",KapUInR,KapUOutR,KapUHalf,
 startFi,endFi);

 G4LogicalVolume *KapU_log
 = new G4LogicalVolume(KapU_tube,Kapton,"KapU_log",0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = KUGasHalf- KapUHalf;
 G4VPhysicalVolume *KapUTube_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x,Pos_y,Pos_z),
 KapU_log,"KapUTube",KUGas_log,false,0);

 //--------------KDGas volume

 G4double KDGasInR = 0.0*cm;
 G4double KDGasOutR = 15/2.*cm;
G4double KDGasHalf = CAlthickness/2.;
 G4Tubs *KDGas_tube
 = new G4Tubs("KDGas_tube",KDGasInR, KDGasOutR, KDGasHalf, startFi, endFi);

 G4LogicalVolume *KDGas_log
 = new G4LogicalVolume(KDGas_tube, MegasGas, "KDGas_log", 0,0,0);

58

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = -(CAlHalf - CAlthickness/2.);
 G4VPhysicalVolume *KDGas_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),
 KDGas_log, "KDGasTube", CAl_log, false,0);
 //--------------- Kapton down

 G4double KapDOutR = KDGasOutR;
 G4double KapDInR = 0.0*cm;
 G4double KapDHalf = 25/2.*um;

 G4Tubs *KapD_tube
 = new G4Tubs("KapD_tube",KapDInR,KapDOutR,KapDHalf,
 startFi,endFi);

 G4LogicalVolume *KapD_log
 = new G4LogicalVolume(KapD_tube,Kapton,"KapD_log",0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = -(KDGasHalf- KapDHalf);
 G4VPhysicalVolume *KapDTube_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x,Pos_y,Pos_z),
 KapD_log,"KapDTube",KDGas_log,false,0);

 //--------------Al backing volume
 G4double AlBackthickness = 25.0*um;
 G4double AlBackInR = 0.0*cm;
 G4double AlBackOutR = GasOutR;
 G4double AlBackHalf = AlBackthickness/2.;
 G4Tubs *AlBack_tube
 = new G4Tubs("AlBack_tube", AlBackInR, AlBackOutR, AlBackHalf, startFi, endFi);

 G4LogicalVolume *AlBack_log
 = new G4LogicalVolume(AlBack_tube, Al, "AlBack_log", 0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = 0.0*cm;
 G4VPhysicalVolume *AlBack_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),
 AlBack_log, "AlBackTube", Gas_log, false,0);

 //--------------Megas volume

59

 G4double MegasInR = 0.0*cm;
 G4double MegasOutR = 9.5/2.*cm;
 G4double MegasHalf = 7./2.*mm;
 G4Tubs *Megas_tube
 = new G4Tubs("Megas_tube", MegasInR, MegasOutR, MegasHalf, startFi, endFi);

 G4LogicalVolume *Megas_log
 = new G4LogicalVolume(Megas_tube, MegasGas, "Megas_log", 0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = +(AlBackthickness/2. + MegasHalf);
 G4VPhysicalVolume *Megas_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),
 Megas_log, "MegasTube", Gas_log, false,0);

 //------------------ Copper(Micromesh)
 G4double Copthickness = 5.*um;
 G4double CopInR = 0.0*cm;
 G4double CopOutR = GasOutR;
 G4double CopHalf = Copthickness/2.;
 G4Tubs *Cop_tube
 = new G4Tubs("Cop_tube", CopInR, CopOutR, CopHalf,
 startFi,endFi);

 G4LogicalVolume *Cop_log
 = new G4LogicalVolume(Cop_tube,Copper,"Cop_log",0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = +(AlBackthickness/2. + MegasHalf*2. + CopHalf);
 G4VPhysicalVolume *Cop_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x,Pos_y,Pos_z),
 Cop_log,"CopTube",Gas_log,false,0);

 //-------------235U volume
 G4double U235thickness = 5.550334*nm;
 G4double U235InR = 0.0*mm;
 G4double U235OutR = 6./2.*cm;
 G4double U235Half = U235thickness/2.;
 G4Tubs *U235_tube
 = new G4Tubs("U235_tube", U235InR, U235OutR, U235Half, startFi, endFi);

 G4LogicalVolume *U235_log
 = new G4LogicalVolume(U235_tube,U235, "U235_log", 0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;

60

 Pos_z = -MegasHalf + U235thickness/2.;
 G4VPhysicalVolume *U235_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),
 U235_log, "U235Tube", Megas_log, false,0);

//========================== Visualization attributes ====================//

 World_log->SetVisAttributes (G4VisAttributes::Invisible);

 G4VisAttributes *CAlTubeAttr = new G4VisAttributes(G4Colour(1.,0.,0.));
 //red
 G4VisAttributes *GasTubeAttr = new G4VisAttributes(G4Colour(0.,1.,0.)); //green
 G4VisAttributes *KUGasTubeAttr = new G4VisAttributes(G4Colour(0.,0.,1.)); //blue
 G4VisAttributes *KapUTubeAttr = new G4VisAttributes(G4Colour(0.8,0.8,0.8)); //grey
 G4VisAttributes *KDGasTubeAttr = new G4VisAttributes(G4Colour(0.,0.4,0.3)); //tale
 G4VisAttributes *KapDTubeAttr = new G4VisAttributes(G4Colour(0.3,0.3,0.3)); //light gray
 G4VisAttributes *AlBackTubeAttr = new G4VisAttributes(G4Colour(0.0,0.0,0.0)); //black
 G4VisAttributes *MegasTubeAttr = new G4VisAttributes(G4Colour(0.0,1.0,1.0)); //cyan
 G4VisAttributes *CopTubeAttr = new G4VisAttributes(G4Colour(1.0,0.0,1.0)); //magenta
 G4VisAttributes *U235TubeAttr = new G4VisAttributes(G4Colour(1.0,1.0,1.0)); //yellow

 CAlTubeAttr->SetVisibility(true);
 CAlTubeAttr->SetForceWireframe(true);
 CAl_log->SetVisAttributes(CAlTubeAttr);

 GasTubeAttr->SetVisibility(true);
 GasTubeAttr->SetForceWireframe(true);
 Gas_log->SetVisAttributes(GasTubeAttr);

 KUGasTubeAttr->SetVisibility(true);
 KUGasTubeAttr->SetForceWireframe(true);
 KUGas_log->SetVisAttributes(KUGasTubeAttr);

 KapUTubeAttr->SetVisibility(true);
 KapUTubeAttr->SetForceWireframe(true);
 KapU_log->SetVisAttributes(KapUTubeAttr);

 KDGasTubeAttr->SetVisibility(true);
 KDGasTubeAttr->SetForceWireframe(true);
 KDGas_log->SetVisAttributes(KDGasTubeAttr);

 KapDTubeAttr->SetVisibility(true);
 KapDTubeAttr->SetForceWireframe(true);
 KapD_log->SetVisAttributes(KapDTubeAttr);

 AlBackTubeAttr->SetVisibility(true);
 AlBackTubeAttr->SetForceWireframe(true);
 AlBack_log->SetVisAttributes(AlBackTubeAttr);

61

 MegasTubeAttr->SetVisibility(true);
 MegasTubeAttr->SetForceSolid(true);
 Megas_log->SetVisAttributes(MegasTubeAttr);

 CopTubeAttr->SetVisibility(true);
 CopTubeAttr->SetForceWireframe(true);
 Cop_log->SetVisAttributes(CopTubeAttr);

 U235TubeAttr->SetVisibility(true);
 U235TubeAttr->SetForceWireframe(true);
 U235_log->SetVisAttributes(U235TubeAttr);

 return World_phys;
}

//--
For a 235 U sample the following parts in the code should be replaced.

G4Element* elenrichedU = new G4Element("enrichedU", "U" ,ncomponents=1);
 elenrichedU->AddIsotope(isoU235, fractionmass=100.*perCent);

density = 18.97*g/cm3;
 G4Material* U235 = new G4Material(name="U235", density,ncomponents=1);
 U235→AddElement(elenrichedU,fractionmass=100.0*perCent);

 G4double U235thickness = 5.550334*nm;
 G4double U235InR = 0.0*mm;
 G4double U235OutR = 6./2.*cm;
 G4double U235Half = U235thickness/2.;
 G4Tubs *U235_tube
 = new G4Tubs("U235_tube", U235InR, U235OutR, U235Half, startFi, endFi);

 G4LogicalVolume *U235_log
 = new G4LogicalVolume(U235_tube,U235, "U235_log", 0,0,0);

 Pos_x = 0.0*cm;
 Pos_y = 0.0*cm;
 Pos_z = -MegasHalf + U235thickness/2.;
 G4VPhysicalVolume *U235_phys
 = new G4PVPlacement(0,
 G4ThreeVector(Pos_x, Pos_y, Pos_z),
 U235_log, "U235Tube", Megas_log, false,0);
//--

XriDetectorConstructor.hh
//---
#ifndef XriDetectorConstruction_H
#define XriDetectorConstruction_H 1

#include "globals.hh"

62

class G4VPhysicalVolume;

#include "G4VUserDetectorConstruction.hh"

class XriDetectorConstruction : public G4VUserDetectorConstruction
{
 public:
 XriDetectorConstruction();
 ~XriDetectorConstruction();

 public:
 G4VPhysicalVolume* Construct();

};

#endif
//--

XriEventAction.cc
//--
#include "XriEventAction.hh"
#include "G4Event.hh"
#include "G4EventManager.hh"
#include "G4TrajectoryContainer.hh"
#include "G4Trajectory.hh"
#include "G4VVisManager.hh"
#include "G4UImanager.hh"
#include "G4ios.hh"
#include <stdio.h>
#include "G4SystemOfUnits.hh"
#include "G4PhysicalConstants.hh"
#include "vars.h"

using namespace std;

ofstream outfileEvnt;

XriEventAction::XriEventAction()
{}

XriEventAction::~XriEventAction()
{}

void XriEventAction::BeginOfEventAction(const G4Event* evt)
{
// resetting energy accumulator...
 Depos = 0.0*MeV;
}

void XriEventAction::EndOfEventAction(const G4Event* evt)
{
 if ((evt->GetEventID()+1) % 100000 == 0)

63

 G4cout << ">>> Event " << evt->GetEventID()+1 << G4endl;

evtNo = evt->GetEventID();
FILE *opf1= fopen("out.dat", "a");

 if (Depos>0)
 {
 outfileEvnt.open ("outdetailed.dat", ios::app);

 // output detailed information about event
 outfileEvnt<<evt->GetEventID()<<"\t"<<Depos/MeV<<"\t"<<heavylight[evt-
>GetEventID()]<<"\t"<<ffZ[evt->GetEventID()]<<"\t"<<ffA[evt->GetEventID()]<<G4endl;

 }
 fclose(opf1);
 outfileEvnt.close();
}

//--

XriEventAction.hh
//--
#ifndef XriEventAction_h
#define XriEventAction_h 1

#include "G4UserEventAction.hh"
#include "globals.hh"

extern G4double Depos; // 19-1-2006
extern G4double evtNo;

class G4Event;

class XriEventAction : public G4UserEventAction
{
 public:
 XriEventAction();
 ~XriEventAction();

 public:
 void BeginOfEventAction(const G4Event*);
 void EndOfEventAction(const G4Event*);

 private:

};

#endif
//--

XriPrimaryGeneratorAction.cc
//--
#include "XriPrimaryGeneratorAction.hh"

64

#include "G4Event.hh"
#include "G4ChargedGeantino.hh"
#include "G4IonTable.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleDefinition.hh"
#include "G4GenericMessenger.hh"
#include "G4SystemOfUnits.hh"
#include "G4PhysicalConstants.hh"
#include "G4GenericMessenger.hh"
#include "G4UImanager.hh"
#include "globals.hh"
#include "Randomize.hh"
#include <stdio.h>
#include <cmath>
#include <iostream>
#include <fstream>
#include <string>
#include "vars.h"

using namespace std;

ofstream outfile1;

XriPrimaryGeneratorAction::XriPrimaryGeneratorAction()
//rndmFlag("on")
 : G4VUserPrimaryGeneratorAction(),
 particleGun(0)
{
 G4int n_particle = 1;
 particleGun = new G4ParticleGun(n_particle);

 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle
 = particleTable->FindParticle("chargedgeantino");
 particleGun->SetParticleDefinition(particle);
 particleGun->SetParticlePosition(G4ThreeVector(0.,0.,0.));
 particleGun->SetParticleEnergy(1*eV);
 particleGun->SetParticleMomentumDirection(G4ThreeVector(1.,0.,0.));
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

XriPrimaryGeneratorAction::~XriPrimaryGeneratorAction()
{
 delete particleGun;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

65

void XriPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 G4int countevpicked = 0.;
 for(int i=0; i<GEF_SIZE; i++){
 countevpicked += eventspicked[i];
 }
 if((countevpicked-1) == GEF_SIZE){
 G4cout<<"All events already chosen!!"<<endl;
 }
 G4cout<<(countevpicked - 1)<<" is the eventID of chosen primary"<<endl;

 //store if ff is heavy or light
 heavylight[(countevpicked-1)]=(totalevents[rndi].ff); //[0] eventID =0

 //eventID=0, countevpicked=1
 //store id of primary ff
 ffZ[(countevpicked-1)]=(totalevents[rndi].Z);
 ffA[(countevpicked-1)]=(totalevents[rndi].A);

 G4cout<<" heavy or light= "<<heavylight[(countevpicked-1)]<<" "<<totalevents[rndi].ff<<"
Z="<<ffZ[(countevpicked-1)]<<" A="<<ffA[(countevpicked-1)]<<endl;

 // output chosen event

outfile1<<totalevents[rndi].ffid<<"\t"<<totalevents[rndi].Z<<"\t"<<totalevents[rndi].A<<"\t"
<<totalevents[rndi].Ekin<<"\t"<<totalevents[rndi].px0<<"\t"<<totalevents[rndi].py0<<"\t"<<
totalevents[rndi].pz0<<"\t"<<totalevents[rndi].x0<<"\t"<<totalevents[rndi].y0<<"\t"<<totale
vents[rndi].z0<<"\t"<<totalevents[rndi].ff<<"\t"<<endl;

G4double ionCharge = 0.*eplus;
G4double excitEnergy = 0.*keV;

 // particle id
 G4ParticleDefinition* particle = particleGun->GetParticleDefinition();
 if (particle == G4ChargedGeantino::ChargedGeantino()) {
 G4ParticleDefinition* ion = G4IonTable::GetIonTable()-
>GetIon(totalevents[rndi].Z,totalevents[rndi].A,excitEnergy);
 particleGun->SetParticleDefinition(ion);
 particleGun->SetParticleCharge(ionCharge);
 }

 particleGun->SetParticleEnergy(totalevents[rndi].Ekin*MeV);
 particleGun-
>SetParticleMomentumDirection(G4ThreeVector(totalevents[rndi].px0,totalevents[rndi].py0
,totalevents[rndi].pz0));
 particleGun-
>SetParticlePosition(G4ThreeVector(totalevents[rndi].x0*cm,totalevents[rndi].y0*cm,totale
vents[rndi].z0*cm));

 //create vertex

66

 particleGun->GeneratePrimaryVertex(anEvent); //to generate an event

 }
//--

XriPrimaryGeneratorAction.hh
//--
#ifndef XriPrimaryGeneratorAction_h
#define XriPrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "globals.hh"

class G4ParticleGun;
class G4Event;

class XriPrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction
{
 public:
 XriPrimaryGeneratorAction();
 ~XriPrimaryGeneratorAction();

 public:
 void GeneratePrimaries(G4Event *anEvent);

 private:
 G4ParticleGun* particleGun;
};

#endif
//--

XriRunAction.cc
//--
#include "XriRunAction.hh"
#include "G4Run.hh"
#include "G4UImanager.hh"
#include "G4VVisManager.hh"
#include "G4ios.hh"
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "vars.h"

using namespace std;

RunActionXri::RunActionXri()
{
 runIDcounter = 0;
}

RunActionXri::~RunActionXri()
{}

67

void RunActionXri::BeginOfRunAction(const G4Run* aRun)
{
 ((G4Run *)(aRun))->SetRunID(runIDcounter++);

 G4cout << "### Run " << aRun->GetRunID() << " start." << G4endl;

 //reset eventspicked
 for(int i=0; i<GEF_SIZE; i++){
 eventspicked[i]=0.; //history of picked events is reset before each run
 }
 // check if eventspicked is reset before each execution of programme
 G4double rres =0.;
 for(int i=0; i<GEF_SIZE; i++){
 if(eventspicked[i]){ //an event is not reset
 rres ++;}
 }

 if(rres){
 G4cout<<"run.cc event is not reset!!!"<<endl;
 }
 else{
 G4cout<<"run.cc events all reset!!!"<<endl;
 }

 srand(time(0));
 FILE *opf1 = fopen("out.dat","w");
 fclose(opf1);

 ofstream stepout;
 stepout.open("stepping.dat");

 G4UImanager* UI = G4UImanager::GetUIpointer();
 UI->ApplyCommand("/tracking/storeTrajectory 1");

 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
 if(pVVisManager)
 {
 UI->ApplyCommand("/vis~/clear/view");
 UI->ApplyCommand("/vis~/draw/current");
 }
}

void RunActionXri::EndOfRunAction(const G4Run* aRun)
{
 G4cout << "@#@#@# Run " << aRun->GetRunID() << " ended." << G4endl;
 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

 if(pVVisManager)
 {
 G4UImanager::GetUIpointer()->ApplyCommand("/vis~/show/view");

68

 }
}
//--

XriRunAction.hh
//--
#ifndef RunActionXri_h
#define RunActionXri_h 1

#include "G4UserRunAction.hh"
#include "globals.hh"

class G4Run;

class RunActionXri : public G4UserRunAction
{
 public:
 RunActionXri();
 virtual ~RunActionXri();

 public:
 virtual void BeginOfRunAction(const G4Run* aRun);
 virtual void EndOfRunAction(const G4Run* aRun);

 private:
 G4int runIDcounter;
};

#endif
//--

XriSteppingAction.cc
//--
#include <stdio.h>
#include<cstring>
#include "XriSteppingAction.hh"
#include "XriDetectorConstruction.hh"
#include "G4SteppingManager.hh"
#include "G4Track.hh"
#include "G4SystemOfUnits.hh"
#include "G4PhysicalConstants.hh"
#include <iostream>
#include <fstream>
#include "vars.h"

using namespace std;

XriSteppingAction::XriSteppingAction(XriDetectorConstruction*
myDC):myDetector(myDC)//, eventAction(myEA)
{ }
ofstream stepout("stepping.dat", ios::out | ios::app);
void XriSteppingAction::UserSteppingAction(const G4Step* aStep)
{

69

 const G4VPhysicalVolume* currentVolume1 = aStep->GetPreStepPoint()->
GetPhysicalVolume();

 // collect the energy deposited in the absorbers
 G4Track *aTrack = aStep->GetTrack();

 if (currentVolume1->GetName() == "MegasTube")
{

 if(aStep→GetTotalEnergyDeposit()>0){
 Depos += aStep->GetTotalEnergyDeposit();
 I f(aStep->GetTrack()->GetGlobalTime()<(1E-07)){
 G4cout<<"Too small time!!! <1E-07"<<"\t"<<aStep->GetTrack()-
>GetGlobalTime()/s<<G4endl;}
 }
 }
}

//--

XriSteppingAction.hh
//--
#ifndef XriSteppingAction_h
#define XriSteppingAction_h 1

#include "G4UserSteppingAction.hh"
#include "globals.hh"

extern G4double Depos; // 19-1-2006
extern G4double evtNo;

class XriDetectorConstruction;
class G4Track;

class XriSteppingAction : public G4UserSteppingAction
{
 public:
 XriSteppingAction(XriDetectorConstruction* myDC);
 virtual ~XriSteppingAction(){};

 virtual void UserSteppingAction(const G4Step*);

 private:
 XriDetectorConstruction* myDetector;
};

#endif
//--

70

71

References

[1] N. Bohr and J. A. Wheeler, The Mechanism of Nuclear Fission, Phys. Rev. 56, (1939)
 pp. 426–450, DOI: 10.1103/PhysRev.56.426

[2] S. Bjørnholm and J. E. Lynn, The double-humped fission barrier, Rev. Mod. Phys. 52,
 (1980) pp. 725–931, DOI: 10.1103/RevModPhys.52.7254

[3] V. Strutinsky, Shell effects in nuclear masses and deformation energies, Nucl. Phys. A
 95(2), (1967) pp. 420 – 442, DOI: 10.1016/0375-9474(67)90510-6

[4] J. R. Huizenga, Nuclear fission revisited, Science, 168:1405–1413, 1979

[5] "Introductory Nuclear Physics", K. S. Krane, John Wiley & Sons.

[6]Y.Nagame and H. Nakahara, Two-mode fission- experimental verification and

characterization of two fission-modes, Radiochim. Acta 100, 605–614 (2012),DOI
10.1524/ract.2012.1968

[7] D. Madland, Nuclear Physics A, 772, 113-137, 2006

[8] F. Gunsing, et al., The measurement programme at the neutron time-of-flight facility n-

TOF at CERN, Eur. Phys. J., Web of Conferences 146. DOI:10.1051/epjconf/201714611002.

[9] F. Gunsing, et al., Nuclear data activities at the n TOF facility at CERN, Eur. Phys. J. Plus 131

(10) (2016) 371. DOI:10.1140/epjp/i2016-16371-4.

[10] M. Sabate-Gilarte, et al., High-accuracy determination of the neutron flux in
 the new experimental area n TOF-EAR2 at CERN, Eur. Phys. J. A 53 (10).
 DOI:10.1140/epja/i2017-12392-4.

[11] C. Weiss, et al., The new vertical neutron beam line at the CERN n TOF facility
 design and outlook on the performance, Nucl. Instrum. Meth. A 799
 (2015) 90 – 98. DOI:10.1016/j.nima.2015.07.027.

[12] Y. Giomataris et al., MICROMEGAS: a high-granularity position-sensitive gaseous
 detector for high particle-flux environments, Nucl. Instrum. Meth. A 376(1), (1996)
 pp. 29 – 35, DOI: 10.1016/0168-9002(96)00175-1

[13] Y. Giomataris, Development and prospects of the new gaseous detector “Micromegas”,
 Nucl. Instrum. Meth. A 419(2–3), (1998) pp. 239 – 250, DOI: 10.1016/S0168-

9002(98)00865-1

[14] I. Giomataris, MICROMEGAS: results and prospects, ICFA Instrum. Bul. 19,
 www.slac.stanford.edu/pubs/icfa/fall99/paper1/paper1a.html //cf4

[15] F. Sauli, Micro-pa�ern gas detectors, Nucl. Instrum. Meth. A 477(1–3), (2002) pp.
 1 – 7, DOI: 10.1016/S0168-9002(01)01903-9, 5th Int. Conf. on Position-Sensitive
 Detectors

72

[16] L. Shekhtman, Micro-pa�ern gaseous detectors, Nucl. Instrum. Meth. A 494(1–3),
 (2002) pp. 128 – 141, DOI: 10.1016/S0168-9002(02)01456-0, Proceedings of the 8th
 International Conference on Instrumentation for Colliding Beam Physics

[17] S Andriamonje et. al.Development and performance of Microbulk Micromegas detectors
 S Andriamonje et al 2010 JINST 5 P02001

[18] K.-H. Schmidt et al., Nucl. Data Sheets 131 (2016) 107

[19] B. Jurado and K. -H. Schmidt, Status of the general description of fission observables by

the GEF code, CENBG, CNRS/IN2P3, Chemin du Solarium, B. P. 120, 33175 Gradignan,
France

[20] http://www.khs-erzhausen.de/GEF.html

[21] U. Mosel, H. W. Schmitt, Potential energy surfaces for heavy nuclei in the two-center

model, Nucl. Phys. A 165, 73 (1971)

[22] K.-H. Schmidt, A. Kelic, M. V. Ricciardi, Experimental evidence Europh. Lett. 83, 32001

(2008)

[23] B. D. Wilkins, Scission-point model of nuclear fission based on deformed-shell effects, E.

P. Steinberg, R. R. Chasman, Phys. Rev. C 14, 1832 (1976)

[24] K.-H. Schmidt, B. Jurado, Entropy Driven Excitation Energy Sorting in Superfluid Fission

Dynamics, Phys. Rev. Lett. 104, 212501 (2010)

[25] Geant4 Collaboration (S. Agostinelli et al.), Nucl. Instrum. Meth. Phys. Res. A 506, 250-

303 (2003)

[26] Geant4 Collaboration (J. Allison et al.), IEEE Trans. Nucl. Sci., 53, 270-278 (2006)

[27] Guatelli, S, Cutajar, D, Rosenfeld, A B, Oborn, B, and Centre for Medical Radiation Physics,
 Introduction to the Geant4 Simulation toolkit. United States: N. p., 2011. Web DOI:
 10.1063/1.3576174.

[28] A. Stanculescu, Annals of Nuclear Energy 62, 607-612, (2013)

[29] Generation-IV International Forum, www.gen-4.org/

[30] https://www.iaea.org/sites/default/files/16/11/npparisagreement.Pdf

[31] A.J.M. Plompen, Nucl. Data Sheets 118, 78-84 (2014)

[32] E. Dupont et al., these proceedings, NEA Nuclear Data High Priority Request List,

www.nea.fr/html/dbdata/hprl

[33] M. Salvatores et al., OECD/NEA WPEC, Subgroup 26 Final Report,

www.oecdnea.org/science/wpec/volume26/volume26.pdf

http://www.nea.fr/html/dbdata/hprl
http://www.oecdnea.org/science/wpec/volume26/volume26.pdf

73

[34] Eleme, & et al. (2019). Cross section measurement of 241Am(n,f) reaction at the
Experimental Area 2 of the n_TOF facility at CERN: First Results. HNPS Proceedings,
27, 189-194.

[35] U. Abbondanno et al., Nucl. Instrum. Meth. A 538,692-702 (2005)

[36] R. Kirk, D. Othmer, Kirk-Othmer Encyclopedia of Chemical Technology, Vol 1, 4th edition
 John Wiley and Sons, 2004

[37] https://www.atsdr.cdc.gov/ToxProfiles/tp156.pdf

[38] G. Knoll, Radiation Detection and Measurement, Wiley, 4th ed. (2010)

